
Advances in Water Resources 70 (2014) 172–184
Contents lists available at ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier .com/ locate/advwatres
Analytical solutions for benchmarking cold regions subsurface
water flow and energy transport models: One-dimensional soil thaw
with conduction and advection
http://dx.doi.org/10.1016/j.advwatres.2014.05.005
0309-1708/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Address: Department of Civil Engineering, UNB, 17
Dineen Drive, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada. Tel.: +1 506 453
4521.

E-mail address: barret.kurylyk@unb.ca (B.L. Kurylyk).
Barret L. Kurylyk a,⇑, Jeffrey M. McKenzie b, Kerry T.B. MacQuarrie a, Clifford I. Voss c

a Department of Civil Engineering, University of New Brunswick, Fredericton, NB, Canada
b Department of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada
c U.S. Geological Survey, Menlo Park, CA, USA
a r t i c l e i n f o

Article history:
Received 11 February 2014
Received in revised form 11 May 2014
Accepted 13 May 2014
Available online 21 May 2014

Keywords:
Analytical solutions
Thawing front
Phase change
Thermohydraulic models
Stefan problem
Freezing and thawing
a b s t r a c t

Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimi-
larities often exist in their mathematical formulations and/or numerical solution techniques, but few
analytical solutions exist for benchmarking flow and energy transport models that include pore water
phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate
analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen
thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy veloc-
ity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the
Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and
advection are compared to those obtained from the finite element model SUTRA. Three problems, two
involving the Lunardini solution and one involving the classic Neumann solution, are recommended as
standard benchmarks for future model development and testing.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

A number of powerful simulators of cold regions subsurface
water flow and energy transport have emerged in recent years
e.g., [1–16]. These models, most of which are briefly described by
Kurylyk and Watanabe [17], simulate subsurface energy exchange
via conduction, advection and pore water phase change and
account for reduction in hydraulic conductivity due to pore ice for-
mation e.g., [17–21]. Researchers have employed these models to
quantify the subsurface hydrological and thermal influences of cli-
mate change in cold regions. Simulated and/or observed climate
change impacts in cryogenic soils include permafrost degradation,
active layer expansion, talik formation, dormant aquifer activation,
and changes to the timing, magnitude, and temperature of ground-
water recharge and discharge [22–29]. Three other emerging
applications of cold regions subsurface flow and heat transport
models are to aid in the design and analysis of frozen soil barriers
to impede the migration of contaminated water [30], to simulate
the influence of design alternatives for cold regions infrastructure
[31], and to investigate hypothetical hydrological processes on
Mars [2,32].

These cold regions models are characterized by diversity in both
their nomenclature and underlying theory due to the differing
backgrounds of researchers in this multi-disciplinary field. These
variations elicit the demand for benchmarking problems to test
the physics and numerical schemes of these models and to conduct
inter-code comparisons. These benchmarking problems can be
formulated from existing analytical solutions or developed from
well-posed numerical problems [4]. For example, groundwater
flow and energy transport models that include the dynamic
freeze–thaw process have been tested against analytical solutions,
such as the Neumann or Stefan solutions [33], which predict the
propagation of soil thawing or freezing by considering subsurface
heat exchange through conduction and pore water phase change.
These classic solutions do not accommodate advective heat trans-
port and are therefore limited in their ability to fully test numerical
models that include subsurface heat transfer due to groundwater
flow. Indeed the inclusion of heat advection via subsurface water
flow is one primary advantage of many of these emerging models
in comparison to simpler conduction-based cold regions heat
transport models e.g., [34,35].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2014.05.005&domain=pdf
http://dx.doi.org/10.1016/j.advwatres.2014.05.005
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Fig. 1. The theoretical conditions represented by the analytical solutions of Stefan
(Eq. (6)), Neumann (with initial conditions at the freezing temperature, Eqs. (12),
(13) and (15)) and Lunardini (Eq. (33)) for (a) time = 0, and (b) after a period of soil
thawing. Note the difference between x (distance below surface for any arbitrary
point) and X (distance below surface to freeze–thaw interface). X increases with
time. The water flow (heat advection) indicated in (b) is not included in the Stefan
or Neumann solutions (adapted from [37,50]).
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To the authors’ knowledge, no numerical models of subsurface
water flow and heat transport have been compared to analytical
solutions that consider heat exchange due to conduction, advec-
tion, and pore water phase change. Exact analytical solutions that
include advection have been proposed for soil thawing problems
[36,37], but these solutions are only valid if the pore water velocity
is proportional to the thawing front penetration rate. This physical
scenario is difficult to simulate given the Darcian approaches
employed in most existing numerical models e.g., [1,4], and thus
these exact solutions have not been utilized for benchmarking pur-
poses. A more general approximate analytical solution has also
been proposed by Lunardini [37] to estimate one-dimensional soil
thawing subject to advection, conduction, and phase change. This
solution has received very little attention in hydrological literature
to date, which may be due in part to the geotechnical engineering
nomenclature employed, the lack of a detailed description of the
solution’s mathematical development and inherent limitations,
and the approximate nature of the solution.

The objectives of the present contribution are fivefold:

1. To present the governing equations, initial conditions, and
boundary conditions for the classic Stefan and Neumann
solutions for soil thawing.

2. To detail the formulation of Lunardini’s [37] approximate
solution in conventional hydrological nomenclature.

3. To determine the accuracy of this solution in the case of negli-
gible water flow via comparison to the exact Neumann solution.

4. To assess the accuracy of this solution in the case of high water
flow and heat advection via comparisons to results from a
numerical model, and

5. To choose three thawing scenarios to serve as benchmark
problems for cold regions groundwater flow and energy
transport models.

We begin by first presenting the form and application of the
classic Stefan and Neumann solutions [38], which are the basis
for the development and application of the approximate solution
developed by Lunardini [37]. This approximate solution [37] shall
hereafter be referred to as the ‘Lunardini solution’, although we
recognize that Lunardini developed and synthesized numerous
analytical solutions for cold regions soils [33,39]. The mathemati-
cal development of the Lunardini solution is presented in far more
detail than in the original formulation to enable others to adapt it
for their own research purposes. The influence of soil conditions
(e.g., porosity and surface temperature) on the accuracy of the
Lunardini solution is assessed by setting the Darcy velocity, and
hence the heat advection, to a very low value and comparing the
results to those obtained from the exact Neumann solution.
Because the Neumann solution does not accommodate advection,
Lunardini solution results with high water flow rates are compared
to results obtained from a numerical model of coupled water flow
and heat transport with phase change. Of these numerous
simulations, three particular thawing scenarios are selected and
presented in sufficient detail to serve as viable benchmarks. We
anticipate that these problems will be an important contribution
to the ambitious benchmarking project proposed by Grenier et al.
[40] for comparing cold regions thermo-hydraulic codes.

2. Analytical solutions

2.1. Stefan solution

Early geotechnical engineering solutions for estimating frost
penetration depth in soils were derived from the seminal research
of Stefan [41] who focused on freezing and thawing of sea ice [33].
Consequently, problems involving the movement of a freezing or
thawing front are often referred to as ‘Stefan problems’. Various
forms of the Stefan solution have been proposed in literature
[42]; herein we briefly describe the development of a simple form
of the Stefan solution, which calculates the penetration of the
thawing front into an initially frozen, thermally uniform, semi-
infinite column of soil as a result of a sudden increase in surface
temperature (Fig. 1). Heat exchange occurs only due to conduction
and pore water phase change. Soil thawing is assumed to occur
over an infinitesimal temperature range, thus the soil at any point
in space and time is considered either frozen or thawed, although
trace amounts of unfrozen residual water may remain within the
frozen section (Fig. 1).

The transient, one dimensional conduction equation is the gov-
erning heat transfer equation that represents temperature dynam-
ics within the thawed zone of the thawing soil:

k
@2T
@x2 ¼ cq

@T
@t

for 0 6 x 6 X ð1Þ

where k is the bulk thermal conductivity of the thawed zone
(W m�1 �C), c is the specific heat of the thawed medium (soil water
matrix, J kg�1 �C�1), q is the density of the thawed zone (kg m�3), x
is the distance below the surface for any arbitrary point (m), T is the
temperature distribution in the thawed zone (�C), t is time (s), and X
is the distance between the surface and the interface between the
thawed and frozen zones (m) (Fig. 1).

For the Stefan solution, the boundary and initial conditions are:

Initial conditions : Tðx; t ¼ 0Þ ¼ Tf ð2Þ

Surface boundary condition : Tðx ¼ 0; tÞ ¼ Ts ð3Þ

Interface boundary condition : Tðx ¼ X; tÞ ¼ Tf ð4Þ
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where Tf is the temperature at which all soil freezing or thawing
occurs (taken as 0 �C) and Ts is the prescribed surface temperature
boundary condition (>0 �C) (Fig. 1). As Eq. (2) indicates, the initial
temperature of the soil is exactly at the soil freezing temperature.
Thus the soil is initially frozen, but any increase in temperature will
result in fully thawed conditions. This also implies that when x > X
(i.e., within the frozen zone) at any point in time, the temperature is
uniform and equal to the freezing temperature (Fig. 1). This condi-
tion simplifies the medium thermal dynamics, because conductive
heat transfer will never occur in the frozen zone due to the
absence of a thermal gradient. As such, only the thermal properties
of the thawed zone have to be considered (Eq. (1)).

At the thawing front, the conductive heat flux is equal to the
rate of latent energy absorbed due to soil thawing:

�k
@TðX; tÞ
@x

¼ Swf qweLf
dX
dt

ð5Þ

where Swf is the liquid water saturation in the thawed zone that was
originally frozen (volume of ice that undergoes thawing divided by
pore volume), qw is the liquid water density (kg m�3), e is the soil
porosity, and Lf is the latent heat of fusion for water (334,000 J kg�1,
[4]). The notation employed on the right hand side of Eq. (5) indicates
that the temperature gradient is evaluated at the freezing front.

Lunardini [33] and Jumikis [38] detail different approaches for
obtaining the Stefan solution to the governing equations (Eqs. (1)
and (5)) subject to the conditions given in Eqs. (2)–(4). Both
approaches explicitly or implicitly assume that the temperature
distribution in the thawed zone is linear. This implies that the
propagation rate of the thawing front is sufficiently slow to allow
the thermal regime within the thawed zone to achieve steady state
conditions at any point in time (i.e., the right hand side of
Eq. (1) = 0). Thus, the resultant Stefan solution is an approximate
solution to Eqs. (1) and (5) subject to the initial and boundary con-
ditions (Eqs. (2)–(4)) given that the position of the thawing front is
continuously moving downwards, and thus the thermal regime of
the thawed zone has not generally attained true steady-state.

Under this steady-state assumption, the Stefan solution, which
calculates the location of the thawing front (X, Fig. 1) as a function
of time, can be shown to be [38]:

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ST a t

p
ð6Þ

where a is the thermal diffusivity of the thawed medium (thermal
conductivity divided by volumetric heat capacity, m2 s�1) and ST is
the dimensionless Stefan number, which is the ratio of sensible heat
to latent heat. For the case presented in Fig. 1, ST can be shown to be:

ST ¼
cq ðTs � Tf Þ
Swf qw eLf

¼ k Ts

aSwf qw eLf
ð7Þ

where all terms have been previously defined. It is reasonable to
suppose that the linear temperature distribution assumption of
the Stefan equation is most valid when the Stefan number is low.
In this case, the thawing front penetrates slowly, and the thawed
zone temperature profile approaches steady-state conditions.

All of the analytical solutions discussed in this paper tacitly
assume that the density of ice is equivalent to the density of water,
and thus there is no change in volume as a result of phase change.
Also, all of the analytical solutions and most of the numerical mod-
els listed in the present study ignore heat transport through the gas
phase, although two recent numerical models have considered
three phase heat transport in cryogenic soils [2,12]. Finally, it
should be noted that the soil water saturation that has undergone
phase change (Swf) is equal to the liquid water saturation in the
thawed zone minus the residual water saturation in the frozen
zone (i.e., the remaining liquid water when the soil is frozen,
Fig. 1). Thus, in the case of fully saturated soils with very small
residual water saturations (e.g., 0.0001), Swf can be effectively
taken as 1.0. This simplification was employed for all of the
analytical solution results presented in this study.

2.2. Neumann solution

Neumann [43] presented an exact solution for the freezing of
bulk water that predates the Stefan solution, but it was not widely
disseminated until half a century after its development [33]. This
exact solution, when applied for the purpose of simulating thaw
penetration in porous media, relaxes two of the assumptions of
the Stefan solution presented above: the initial temperature in
the domain may be below the freezing temperature, and the
temperature distribution within the thawed zone is generally
non-linear [38]. Because the Neumann solution allows for initial
temperatures below the freezing temperature, the resultant ther-
mal gradient from the thawing front towards the frozen zone will
induce frozen zone conductive heat transfer. The thawed and
frozen zones are characterized by different thermal properties,
and thus two distinct transient heat conduction equations are
considered:

a
@2T
@x2 ¼

@T
@t

for 0 6 x 6 X ð8aÞ

af
@2T
@x2 ¼

@T
@t

for X 6 x 61 ð8bÞ

where T is the temperature distribution in the frozen zone (�C), af is
the bulk thermal diffusivity of the frozen zone (m2 s�1), and all
other parameters are defined the same as in the case of the Stefan
solution. Eq. (8a) is identical to Eq. (1) and represents thermal
dynamics in the thawed zone, whereas Eq. (8b) represents thermal
dynamics in the frozen zone.

The surface and interface boundary conditions are the same as
for the Stefan solution (Eqs. (3) and (4)). Note that the thawed
and frozen zone temperature distributions (T and T) converge at
the interface in accordance with Eq. (4). The initial conditions for
the Neumann solution can be expressed more generally than those
for the Stefan solution:

Initial conditions : Tðx; t ¼ 0Þ ¼ Ti ð9Þ

where Ti is the uniformly distributed initial temperature (<0 �C).
The Neumann solution is also subject to a bottom boundary
condition.

Bottom boundary condition : Tðx ¼ 1; tÞ ¼ Ti ð10Þ

The interface energy balance becomes more complex than in the
case of the Stefan solution development (Eq. (5)), because the con-
ductive flux into the frozen zone must also be considered:

�k
@TðX; tÞ
@x

¼ Swf qweLf
dX
dt
� kf

@TðX; tÞ
@x

ð11Þ

where kf is the bulk thermal conductivity of the frozen zone
(W m�1 �C�1). Eq. (11) essentially states that the conductive energy
flux at the interface from the thawed zone is equal to the rate of
energy absorbed due to soil thawing plus the conductive energy
flux from the interface to the frozen zone.

Several cold regions geotechnical engineering texts e.g.,
[33,38,39,44,45] present derivations of the Neumann solution to
the governing equations (Eqs. (8a), (8b) and (11)) subject to the
boundary and initial conditions (Eqs. (3), (4), (9) and (10)).
The Neumann solution is typically expressed with parameters
employed in geotechnical engineering, but it is presented here in
conventional hydrology nomenclature:

X ¼ m
ffiffi
t
p

ð12Þ
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where m is the coefficient of proportionality (m s�0.5), which can be
found by equating Y1 and Y2:

Y1 ¼ 0:5Lf Swf qw e
ffiffiffiffi
p
p

m ð13Þ

Y2 ¼
kffiffiffi
a
p ðTs � Tf Þ exp

�m2

4a

� ��
erf

m
2
ffiffiffi
a
p

� �� �
� kfffiffiffiffiffiaf
p ðTi

� Tf Þ exp
�m2

4af

� ��
erfc

m
2
ffiffiffiffiffiaf
p

� �� �
ð14Þ

where erf is the error function, erfc is the complementary error
function, and other terms have been previously defined.

This exact solution can be compared to the approximate Stefan
solution by setting the initial temperature of the medium at the
freezing temperature (Ti = Tf = 0 �C). For this simplified scenario
(Fig. 1), conduction only occurs within the expanding thawed zone
as there is no thermal gradient below the thawing front. In this
case, Y1 remains the same, and Y2 simplifies to:

Y2 ¼
kffiffiffi
a
p ðTs � Tf Þ exp

�m2

4a

� ��
erf

m
2
ffiffiffi
a
p

� �� 	
ð15Þ

The Neumann solution can also be applied to calculate the tem-
perature distributions in the thawed and frozen zones or to simu-
late the propagation of a freezing front e.g., [33,38,39,46].
However, for the purpose of comparison to the Stefan and Lunardi-
ni solutions, we focus on the application of the solution to predict
the depth to the thawing front (Eq. (12)).

Several variations on the Neumann and Stefan solutions have
been proposed that accommodate harmonic or irregular surface
temperature boundary conditions, multi-layered soils, tempera-
ture-dependent thermal conductivity, and heat transfer coeffi-
cients between the lower atmosphere and ground surface e.g.,
[39,47–52]. For example, McKenzie et al. [4] utilized an analytical
solution to a physical scenario similar to that shown in Fig. 1, but
with a partially frozen zone between the thawed and frozen zones
to test the performance of the cold regions thermo-hydraulic
model SUTRA. This solution is not described in the present article,
as its application as a numerical model benchmark has been previ-
ously detailed by McKenzie et al. [4] and because it does not
accommodate heat advection and also invokes the limiting
assumption that thermal diffusivity in the partially frozen zone is
constant. In general, researchers have proposed modifications to
the Stefan or Lunardini solutions to improve their fidelity to
physical processes. However, these modifications, which typically
introduce increased complexities into the boundary conditions or
thermal properties, do not typically enhance the solutions’ ability
to assess the performance of the physics and numerical solution
schemes of cold regions numerical models. The Neumann and
Stefan solutions presented herein are the forms most commonly
employed, and they have been used for making comparisons to
results obtained from numerical models that include the dynamic
freeze–thaw process [6,52].

2.3. Lunardini solution

Lunardini [37] produced a solution to the one-dimensional,
semi-infinite soil thawing problem that is shown in Fig. 1, but,
unlike the Neumann and Stefan solutions, it accommodates heat
advection via water flow. Due to the principle of continuity and
the one-dimensional assumptions employed in this solution, the
water flux depicted in Fig. 1(b) must be the same in both
the thawed and frozen zone. This assumption does not generally
reflect reality given that vertical water flux is typically reduced
in the frozen zone due to the hydraulic impedance of ice [17].
However, this does not limit the application of this solution for
benchmarking purposes. Within the frozen zone, the water flux
is still occurring in the liquid phase due to the presence of residual
liquid moisture (Fig. 1). The pore ice acts to reduce the effective
porosity of the soil, and thus the pore water velocity (Darcy veloc-
ity divided by effective porosity for saturated soils) will substan-
tially increase in the frozen zone in comparison to the thawed
zone. However, the advective heat flux is proportional to the Darcy
velocity (flux) not the pore water velocity per se, and thus the
increase in pore water velocity is immaterial from a heat transport
point of view, at least when isothermal conditions between the ice,
residual water, and soil grains are assumed.

The Lunardini solution is herein developed by first introducing
the one-dimensional, transient conduction–advection equation
without phase change [53,54]:

k
@2T
@x2 � v cwqw

@T
@x
¼ cq

@T
@t

for 0 6 x 6 X ð16Þ

where v is the Darcy velocity of the pore water (positive down-
wards, m s�1), cw is the specific heat of water (J kg�1 �C�1), and
other terms have been previously defined. Eq. (16) represents tem-
perature dynamics within the upper thawed zone where energy is
conducted and advected from the specified surface temperature
boundary condition and converted to sensible heat via an increase
in the temperature of the soil–water matrix. This equation does
not account for latent heat and assumes that thermal conductivity
and heat capacity are spatiotemporally invariant. Thus even for
homogeneous soil, Eq. (16) is only valid in the case of constant
water saturation and phase (i.e., in the thawed zone). This can be
rewritten in a form closer to that of the classic advection–dispersion
equation for contaminant transport e.g., [55]:

a
@2T
@x2 � v t

@T
@x
¼ @T
@t

for 0 6 x 6 X ð17Þ

Lunardini [33] incorrectly states that vt (m s�1) represents the
velocity of the mass flux, but it actually represents the velocity of
the thermal plume in the case of pure heat advection (i.e., without
conduction) [56]. Under advection-dominated conditions, the ther-
mal plume will not typically migrate at the same rate as the Darcy
velocity because the volumetric heat capacity of the soil–water
matrix is typically less than the volumetric heat capacity of water.
In general for advection-dominated conditions, the thermal plume
velocity is typically higher than the Darcy velocity but less than the
pore water velocity [56]. The actual expression for vt can be
obtained by a comparison of (16) and (17):

v t ¼ v cwqw

cq
ð18Þ

Note that it is mathematically and physically tenable to have verti-
cally upwards Darcy velocity, but we restrict our results and discus-
sion to vertically downwards flow given that this is the scenario
that would typically occur during snowmelt, infiltration, and asso-
ciated soil thaw.

The Lunardini solution is subject to the same initial conditions
(Eq. (2)), surface boundary condition (Eq. (3)), and interface bound-
ary condition (Eq. (4)) as the Stefan solution. Thus, like the Stefan
solution, the medium is initially at the frozen temperature Tf

(0 �C), and no conductive heat transfer ever occurs within the fro-
zen zone due to the absence of a thermal gradient. Consequently,
only the thermal properties of the thawed zone must be considered
(Eq. (16)). Also, as in the case of the Stefan and Neumann solutions,
the surface temperature Ts (�C) is instantaneously increased above
the freezing temperature at t = 0 (Eq. (3)). Finally, the temperature
at the boundary between the thawed and frozen zones (X, Fig. 1) is
equal to the freezing temperature Tf (Eq. (4)).

The Lunardini solution energy balance at the interface between
the thawed and frozen zones is expressed by equating the sum of



176 B.L. Kurylyk et al. / Advances in Water Resources 70 (2014) 172–184
the conductive and advective thermal fluxes at the thawing front
to the rate of latent energy absorbed at the thawing front:

�k
@TðX; tÞ
@x

þ vcwqwTðX; tÞ ¼ Swf qweLf
dX
dt

ð19Þ

The temperature at the thawing front T(X, t) is 0 �C (Eq. (4)), thus
the advective flux term at the thawing front is zero when the
temperature scale is Celsius. Hence, Eq. (19) can be simplified
and rearranged to isolate for the temperature gradient at the freez-
ing front:

@TðX; tÞ
@x

¼ � Swf qweLf

k
dX
dt

ð20Þ

It should be noted that Eq. (20) and other equations within this
contribution often differ from the few equations presented in the
original study [37] due to differences in the definitions of latent
heat employed by geotechnical engineers and hydrologists.

Lunardini [37] presented three distinct approaches for solving
the governing equations (Eqs. (17) and (20)) subject to the initial
conditions (Eq. (2)) and boundary conditions (Eqs. (3) and (4)).
The first approach results in an exact solution that is limited to
cases where the Darcy velocity and the thermal plume velocity
are proportional to the rate of the propagation of the thawing front.
As previously noted, this exact solution is not well-suited for
benchmarking numerical models due to this limiting condition.
The second approach utilizes the heat balance integral method to
obtain an approximate solution to predict the thawing front pene-
tration. This solution approach allows the Darcy velocity to be any
value, but it invokes the assumption that the temperature distribu-
tion in the thawed zone is always linear. This approach tacitly
assumes that the thermal regime of the thawed zone is conduc-
tion-dominated and at steady-state. Thus, there is an implicit
self-contradiction in this approach at higher Darcy velocities, as
the resultant high advection rates can invalidate the assumption
of conduction-dominated conditions and produce non-linear tem-
perature profiles.

The third approach, which we employ in the present study,
assumes that the rate of the thawing front propagation is slow
enough to allow for steady-state temperature conditions to be
achieved above the thawing front. However, the solution allows
for nonlinear temperature profiles in the thawed zone due to the
influence of heat advection. Thus this solution approach relaxes
one of the assumptions of the second approach. It should be noted
that Lunardini’s [37] third approach was heavily influenced by the
seminal work of Fel’dman [57].

If steady-state thermal conditions are assumed for the thawed
zone, the transient governing equation (17) can be replaced with
the steady-state conduction advection equation:

a
d2T

dx2 � v t
dT
dx
¼ 0 ð21Þ

For a given X (Fig. 1), the solution to Eq. (21) subject to the
boundary conditions at the ground surface and the thawing front
(Eqs. (3) and (4)) is a special case of the classic steady-state conduc-
tion-advection solution proposed by Bredehoeft and Papadopulos
[58].

For notational convenience, two new terms can be defined:

c ¼ dT
dx

ð22Þ
b ¼ v t

a
ð23Þ

where c is the temperature gradient at any point in the thawed
zone assuming steady-state conditions (�C m�1) and b is the ratio
of the thermal plume velocity to the thermal diffusivity (m�1).
Inserting Eqs. (22) and (23) into Eq. (21) and rearranging yields:

dc
c
¼ bdx ð24Þ

which can be solved by integrating both sides between any arbi-
trary x and the thawing front position X:Z cðx¼XÞ

cðx¼xÞ

dc
c
¼
Z X

x
bdx ð25Þ

The resultant equation for the steady-state temperature
gradient can be found by performing the integrations, isolating
for c, and substituting back in the definition for c (Eq. (22)):

dT
dx
¼ dTðX; tÞ

dx
expfb ðx� XÞg ð26Þ

Eq. (26) can now be rearranged and integrated from the
surface (x = 0) to the thawing front (x = X). The temperature
gradient at the thawing front can be considered independent of
the integration on the right hand side given that it is constant with
respect to space:Z Tðx¼XÞ

Tðx¼0Þ
dT ¼ dTðX; tÞ

dx

Z X

0
expfb ðx� XÞgdx ð27Þ

This integration can be performed by recalling that the temper-
atures at the surface and thawing front are Ts and 0 �C,
respectively:

Ts ¼ �
dTðX; tÞ

dx
1
b
ð1� expð�bXÞÞ

� �
ð28Þ

Eq. (28) can be rearranged to isolate for the temperature gradi-
ent at the thawing front:

dTðX; tÞ
dx

¼ �TS b
f1� expð�bXÞg ð29Þ

This thawing front temperature gradient, which was obtained
by solving the steady-state conduction-advection equation, can
be equated to the thawing front temperature gradient obtained
from the interface energy balance (Eq. (20)):

�TS b
ð1� expð�bXÞÞ ¼ �

Swf qweLf

k
dX
dt

ð30Þ

The rate of thawing front penetration can be isolated, and the
fundamental definitions for b (Eq. (23)) and the Stefan number
(Eq. (7)) can be utilized to yield:

dX
dt
¼ v t ST

f1� expð�bXÞg ð31Þ

This ordinary differential equation can be solved via a separa-
tion of variables and integrating from t = 0 to any arbitrary t:Z Xðt¼tÞ

Xðt¼0Þ
f1� expð�bXÞgdX ¼

Z t

0
v t ST dt ð32Þ

Both sides of Eq. (32) can be integrated to yield the implicit
equation for X presented by Lunardini [37]:

X þ a
v t

exp �v t X
a

� �
� 1

� �
¼ v t ST t ð33Þ

Eq. (33) is herein referred to as the ‘Lunardini solution’. Lunar-
dini solution inaccuracies arise due to the invoked steady-state
assumption (Eq. (21)). Thawing scenarios with high Stefan num-
bers will experience rapid thawing front propagation and thus vio-
late this steady-state assumption. Herein, the sensitivity of the
Lunardini solution accuracy to the Stefan number is investigated
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in detail by setting the Darcy velocity (and thus vt, Eq. (18)) very
low and comparing the Lunardini solution results to those of the
exact Neumann solution with initial temperatures at the freezing
temperature. A range of Stefan numbers is obtained by considering
thawing scenarios with varying porosities and surface
temperatures. This approach does not test the ability of the Lunar-
dini solution to correctly accommodate advective heat transport.
However, a comparison to the Neumann solution does indicate
how inaccuracies associated with the steady-state temperature
assumption influence the Lunardini solution accuracy. Further-
more, Lunardini solution results obtained for scenarios with high
Darcy velocities will be compared to numerical modeling results
to demonstrate the influence of heat advection on soil thawing.

Because both the Lunardini and Stefan solutions assume quasi-
steady conditions, the Lunardini solution should approach the
Stefan solution as advection becomes negligible. The second order
Maclaurin series expansion for the exponential term in Eq. (33)
through second order is [59]:

exp �v t X
a

� �
� 1� v t X

a
þ 1

2
v2

t X2

a2 ð34Þ

Higher order Maclaurin series terms will become negligible as
the coefficient in the exponential term becomes smaller. This is
the case as the thermal plume velocity vt (and thus the Darcy
velocity) approaches zero. In this case, Eq. (34) can be inserted into
Eq. (33) to yield:

X þ a
v t

1� v t X
a
þ 1

2
v2

t X2

a2 � 1

 !
¼ v t ST t ð35Þ

As expected in this case, this equation can be shown to simplify to
the Stefan equation (Eq. (6)) via a cancelation of terms.
Specified Darcy velocity
(v = -0, -10 or -100 m yr-1, leaving domain)
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no flow 
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Fig. 2. Model domain, initial conditions, and boundary conditions employed in
SUTRA. The no-flow, thermally insulating boundaries constrained the fluid flow and
energy transport to the vertical direction. Water enters the domain at the upper
boundary and discharges at the lower boundary. The domain was spatially
discretized into one column of 2000 elements with a height of 1 mm (finer mesh
than indicated).
2.4. Thermal Peclet number

The relative thermal effects of advection and conduction
vary temporally in the situation depicted in Fig. 1. This
variability can be quantified via the dimensionless thermal Peclet
number (Pe), which is the ratio of heat advection to conduction
[60]:

Pe ¼
v cw qw T
�k @T=@x

ð36Þ

The average thermal gradient in the thawed zone is �Ts/X, and
the average temperature in the thawed zone is �Ts/2. Thus the
average thermal Peclet number in the thawed zone can be
approximated as:

Pe �
v cw qw X

2k
ð37Þ

Thus, for a given soil, the Peclet number for the scenario shown
in Fig. 1 is dependent on the Darcy velocity and the depth to the
thawed zone. It is interesting to note that this Peclet number does
not directly depend on the surface temperature (Ts); however there
is an indirect dependence given that the location of the thawing
front (X) is influenced by Ts. The Peclet number dependence on
X arises because at the initiation of soil thawing, the thermal
gradient between the surface and thawing front is very high, and
conduction dominates. This thermal gradient decreases with time
given that the depth to the thawing front increases while the
temperature difference between the surface and the thawing front
is constant. Hence, the relative influences of heat advection
increase with time.
3. Numerical methods

To demonstrate the utility of the Lunardini solution for bench-
marking purposes, results obtained from the Lunardini solution are
compared to simulations performed with the U.S. Geological
Survey groundwater flow and heat transport model SUTRA [61].
SUTRA is a robust finite element model that accommodates vari-
ably saturated, multi-dimensional groundwater flow and coupled
energy transport. Code modifications allow for pore water
freeze–thaw in saturated environments [4]. More recently, SUTRA
has been further modified to accommodate variably saturated
freezing and thawing, and this version of the code has been applied
to investigate coupled groundwater flow and heat transport in
perennially and seasonally freezing environments [25,62]. These
updates to SUTRA will soon be publicly available. For the present
study, the boundary conditions and other parameters in the model
are adjusted so that the simulations are performed for one-dimen-
sional flow and heat transport with fully saturated conditions and
spatiotemporally-constant Darcy velocity. In this case, SUTRA’s
governing heat transport equation reduces to Eq. (16) in the
thawed zone. Fig. 2 shows the simulation domain, initial condi-
tions, and boundary conditions employed in SUTRA. The constant
Darcy velocity was established with specified fluid flux boundary
conditions at the top (recharge) and bottom (discharge). As previ-
ously noted, the pore water velocity is higher in the frozen zone
due to the pore ice reducing the effective porosity of the porous
medium, but the Darcy velocity is spatiotemporally constant in
both zones. Fully saturated conditions were maintained in SUTRA
by applying uniform initial pressures of 0 Pa (Fig. 2).

The relationship between subzero temperatures and the volume
of unfrozen water existing in the pore space is given by the soil
freezing curve. Kurylyk and Watanabe [17] provide details for the
process of applying capillary theory and the Clapeyron equation
to develop a soil freezing curve from a previously established soil
moisture characteristic curve for unfrozen soils. Other researchers
have developed empirical soil freezing curves directly from
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laboratory tests conducted on soil samples e.g., [63,64]. Hence,
SUTRA and other cold region thermohydraulic models generally
utilize some form of a soil freezing curve that considers freezing
over a range of temperatures less than 0 �C. However, the previ-
ously detailed analytical solutions employ the crude assumption
that the soil freezing curve is represented as a step function. It is dif-
ficult to employ a step function soil freezing curve in a numerical
model because the apparent heat capacity in the zone of freezing
or thawing is dependent on the slope of the soil freezing curve
[4,5], which would be infinite for a step function. A very steep
piecewise linear soil freezing curve was employed in SUTRA to
approximate a saturated step function soil freezing curve:

Sw ¼
1 if T > Tf

1þ b ðT � Tf Þ if Tres 6 T 6 Tf

Sres if T < Tres

0
B@

1
CA ð38Þ

where Sw is the total liquid water saturation (volume of unfrozen
water/pore volume), b is the slope of the freezing curve
(b = (1 � Sres)/(Tf � Tres), �C�1), Sres is the residual liquid water satu-
ration, and Tres is the residual freezing temperature (�C), which is
the temperature at which Sres first occurs.

A very steep freezing curve (Tres very close to 0 �C, see Fig. 3) can
approximate the infinitesimal freezing temperature range assump-
tion of the Neumann, Lunardini, and Stefan solutions and the initial
conditions of the Stefan and Lunardini solutions. For example, if Tres

is assigned a value very close to 0 �C, the initial temperatures in the
numerical model can be set very close to 0 �C (e.g., at or just below
Tres) and still be cold enough to force the entire domain to be fully
frozen at the beginning of the simulation and thus approximately
match the conditions presented in Fig. 1. Note that very small time
steps must be employed with a steep soil freezing curve, as coarse
time steps could produce temperature changes that are larger than
the freezing temperature range. In this case, no latent heat would
be absorbed due to pore ice thaw, and the thawing front penetra-
tion would be over-predicted. Thus there is a tradeoff between
assigning increasingly steep soil freezing curves and minimizing
simulation time.

Note that the term representing liquid water saturation that
experienced phase change Swf, which is employed in the analytical
solutions, can be related to the saturation terms employed in
Eq. (38).
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Fig. 3. Steep piecewise linear soil freezing curve (liquid water content vs.
temperature) employed in SUTRA to mimic the step function soil freezing curve
assumed by all three analytical solutions. The physical meaning of Tres, Tf, Sres, and b
is outlined in the text, and Table A1 lists the values assigned to these parameters for
the present study.
Swf ¼ Sw � Sres ð39Þ

The bulk thermal conductivity kbulk for both the analytical solu-
tions and the SUTRA simulations is calculated as the volumetrically
weighted arithmetic average of the thermal conductivities of the
matrix constituents:

kbulk ¼ ð1� eÞks þ eSwkw þ eSiki ð40Þ

where ks, kw, and ki are the thermal conductivities of the solid grain
particles, liquid water, and ice respectively (Wm�1 �C�1), Si is the
pore ice saturation (volume of ice/pore volume), and other terms
have been defined. In the fully thawed zone and for saturated con-
ditions, the bulk thermal conductivity (simply given as k elsewhere
in this research) simplifies to:

k ¼ ð1� eÞks þ ekw ð41Þ

The bulk heat capacity of the medium (cq) is taken as the
weighted arithmetic average of the heat capacities of the matrix
constituents. In the thawed zone and for saturated conditions, this
simplifies to:

cq ¼ ð1� eÞcsqs þ ecwqw ð42Þ

where cs is the specific heat of the solid grain particles (J kg�1 �C�1)
and qs is the density of the solid grain particles (kg m�3).

Table A1 in the appendix gives the numerical model input
parameters utilized in the present study. Note that the SUTRA
and analytical solution results presented herein can be reproduced
in other codes that do not employ a weighted arithmetic mean for
calculating bulk thermal conductivity provided that the resultant
bulk thawed zone thermal conductivity and thermal diffusivity
match those utilized in our simulations (Table A1). In general,
the soil thermal properties represent those of a saturated sand
with varying porosity [65]. The Lunardini solution assumes that
the Darcy velocity is uniform throughout the entire domain
(thawed and frozen); thus, for benchmarking purposes, any reduc-
tion in hydraulic conductivity due to pore ice formation is ignored.
This is a simplification of the hydraulic dynamics in frozen or par-
tially-frozen soils that facilitates benchmarking comparison. The
value for permeability is not presented as it only affected the pres-
sure distribution, not the temperature distribution, given the satu-
rated conditions and the specified fluid flux boundary conditions at
the top and bottom of the domain (Fig. 2).

Several piecewise linear soil freezing curves (i.e., different val-
ues for b and Tres) were considered, and the soil freezing curve
parameterization indicated in Table A1 was shown to perform well
for the thawing scenarios considered in this study. Due to the very
steep freezing curve employed (Tres = �0.0005 �C, Table A1) very
small time steps were required (minimum size = 0.00001 h). Simu-
lations were performed for 20 days, thus requiring a large number
of time steps (�7,000,000). However, due to the small number of
nodes (4000, Fig. 2), the simulations were completed in approxi-
mately 15 h of computational time on a Dell Precision Workstation
T7500 with a 4 core 2.67 GHz processor. A mesh and time-step
refinement study was conducted to ensure that the SUTRA results
were not significantly impacted by spatiotemporal discretization
errors. Smaller time steps did not produce considerably better fits
to the analytical solutions, and the spatial discretization error is
minimal given the fine spatial resolution (1 mm).

Table 1 contains the details that differentiate the fifteen thaw-
ing scenarios considered in this study. Analytical solution calcula-
tions and numerical model simulations were performed for
thawing scenarios with varying porosities, surface temperatures,
and Darcy velocities. Varying soil properties (i.e., Stefan numbers)
were considered to test the accuracy of the Lunardini solution with
negligible flow against the exact Neumann solution. Various
Darcy velocities were considered to examine the influence of heat



Table 1
Details for the simulations performed using the described analytical solutions and numerical model.

Thawing scenario/run Analytical solutions Compared to SUTRA (Y/N?) Porosity Ts (�C) Darcy velocity (m yr�1) Associated figures

1 Stefan, Neum., Lun.a No 0.25 1 0b 4a, 5, 6ab

2 Stefan, Neum., Lun. No 0.25 5 0 4a, 5
3 Stefan, Neum., Lun. No 0.25 10 0 4a, 5, 6b
4 Stefan, Neum., Lun. No 0.50 1 0 4b, 5, 6a
5 Stefan, Neum., Lun. No 0.50 5 0 4b, 5
6 Stefan, Neum., Lun. No 0.50 10 0 4b, 5, 6b
7 Lunardini No 0.25 1 10 6a
8 Lunardini No 0.25 1 100 6a
9 Lunardini Yes 0.50 1 10 6a,8a
10 Lunardini Yes 0.50 1 100 6a, 8b
11 Lunardini No 0.25 10 10 6b
12 Lunardini No 0.25 10 100 6b
13 Lunardini No 0.50 10 10 6b
14 Lunardini No 0.50 10 100 6b
15 Neumann Yes 0.50 5c 0 7

a ‘Neum’. = Neumann solution and ‘Lun.’ = Lunardini solution.
b In general, we list thawing scenarios together that had null (0 m yr�1) and negligible (0.001 m yr�1) Darcy velocities.
c Unlike every other thawing scenario given in Table 1, run 15 had initial temperatures much less than 0 �C (�5 �C).
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advection on soil thawing and to form benchmarks to assess the
performance of cold regions subsurface flow and heat transport
models. In the cases of negligible or no Darcy velocity, the results
between the three analytical solutions (Stefan, Neumann, and
Lunardini) were compared. Table 1 also notes the instances that
the results from the analytical solutions were compared to those
obtained from the SUTRA simulations.
4. Results and discussion

4.1. Comparison of Stefan, Neumann, and Lunardini solutions for zero
or negligible Darcy velocity

Fig. 4 shows the calculated depths to the thawing front obtained
from each of the analytical solutions (Stefan, Neumann, and
Lunardini) for six different thawing scenarios resulting from two
porosities and three specified surface temperatures (runs 1–6,
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figure given the null or negligible Darcy velocity. Simulations were performed with three
in Table A1.
Table 1). The Stefan and Neumann solutions assume zero fluid flux,
thus a very low Darcy velocity (v = 0.001 m yr�1) was assigned for
the Lunardini solution as the solution becomes unstable for the
case of v and vt = 0. A range of values for the low Darcy velocity
were tested, and the results indicate that this Darcy velocity
(v = 0.001 m yr�1) is low enough to cause any advective influences
to be negligible for the thawing scenarios considered. The Stefan
and Lunardini solution results converge for low velocities, and they
are thus represented with one series.

Fig. 4 demonstrates that the depth to the thawing front
increases with increasing specified surface temperature and
decreasing soil porosity (i.e., decrease in latent heat absorbed
during thawing). Conversely, the accuracies of the Lunardini and
Stefan solutions in comparison to the exact Neumann solution
(error measured as a % of X) clearly decrease with increasing spec-
ified surface temperature and decreasing soil porosity (Fig. 4). It
should be noted that, in addition to reducing the amount of
pore ice available for phase change, decreasing the soil porosity
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increases the bulk thawed zone thermal diffusivity via Eqs. (41)
and (42) given that the soil grains generally have a higher thermal
conductivity and lower heat capacity than water. Both processes
(i.e., increased thermal diffusivity and reduced latent heat)
increase the rate of the thawing front penetration.

Fig. 5 more specifically shows that the Stefan and Lunardini
solutions’ errors increase with increasing Stefan number. The coef-
ficient of determination (R2 value) in Fig. 5 demonstrates that the
relative errors of these approximate solutions vary linearly with
the Stefan number. The relative error of the Lunardini solution
after 20 days for the thawing scenario with Ts = 1 and poros-
ity = 0.50 is only 0.32%. These results suggest that the Lunardini
solution can be sufficiently accurate to be utilized for benchmark-
ing purposes and that appropriate benchmark thawing scenarios
(i.e., Stefan numbers) can be identified via comparison to the
Neumann solution.
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4.2. Lunardini solution with advection

The Lunardini solution results presented above have assumed
negligible Darcy velocities and heat advection to facilitate compar-
ison to the other solutions. Fig. 6 shows the impact of Darcy veloc-
ities up to 100 m yr�1 (positive implies recharge) calculated with
the Lunardini solution for specified surface temperatures of 1 and
10 �C and porosities of 0.25 and 0.5 (runs 1, 3, 4, and 6–14, Table 1).
The advective influence increases with decreasing porosity and
increasing surface temperature, Darcy velocity, and time. For
example, in Fig. 6(b), the thawing front penetration is approxi-
mately a linear function of time for a surface temperature of
10 �C, a porosity of 0.25, and a Darcy velocity of 100 m yr�1. This
linear relationship is indicative that the thawed zone thermal
regime is advection-dominated given that conduction-dominated
regimes exhibit curvature in the X-time relationship for this type
of soil thawing problem (e.g., Fig. 4). Eq. (37) can be applied to
demonstrate that the thawed zone advective flux is first equal to
the conductive flux when X = 0.37 (t = 1.53 days) for this thawing
scenario (run 12, Table 1).

For a porosity of 0.25 and a specified surface temperature of
10 �C (Fig. 6(b)), the differences between depths to the thawing
front obtained for Darcy velocities of 0.001 and 100 m yr�1 is
1921 mm after 20 days. This difference decreases to 59 mm when
the porosity is increased to 0.5 and the surface temperature is
decreased to 1 �C (Fig. 6(a)). Note that a Darcy velocity of
100 m yr�1 is higher than the mean annual infiltration rates
experienced in cryogenic soils; however, snowmelt-filled
depressions overlying frozen soil can provide the source water
for temporarily enhanced infiltrations rates that can be on the
order of 10 m yr�1[66].

The increase of the thermal influence of advection with time is
expected given that the average thawed zone advective flux is tem-
porally invariant while the thermal gradient and the conductive
flux decrease as the depth to the thawing zone increases. The direct
relationship between the surface temperature and the impact of
advection is more complicated as the average thawed zone con-
ductive and advective fluxes are both dependent on the surface
temperature (e.g., Eq. (36)). However, the conductive flux is also
inversely proportional to the depth to the thawing front, which
city = 10 m/yr Darcy velocity = 100 m/yr
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increases with increasing surface temperature. Finally, the increase
in the impact of the advective heat flux with decreasing porosity
arises due to the dependency of the matrix volumetric heat capac-
ity on porosity (Eq. (42)). For unfrozen saturated soils, the bulk vol-
umetric heat capacity decreases with decreasing porosity because
the volumetric heat capacity of most soil grains is less than the vol-
umetric heat capacity of water [65]. Soils with lower heat capaci-
ties have less thermal inertia and will thus exhibit more thermal
sensitivity to a given advective heat flux than soils with higher heat
capacities.
4.3. Proposed benchmarks: comparison of the analytical solutions and
numerical model

4.3.1. Comparison of Neumann solution and SUTRA
To date, the classic Neumann solution (Eqs. (12)–(14)) has not

been utilized as a benchmarking solution in many existing cold
regions subsurface water and energy transport models. The few
studies that have employed this solution for verification and/or
comparison purposes e.g., [6,46] have not presented sufficient
details on the numerical model and analytical solution parameter-
ization and/or results to enable other researchers to reproduce the
same scenario for benchmarking purposes. Also, previous studies
have used the solution to compute temperature profiles rather
than the penetration of the soil thawing front. Here we present
graphical and tabulated results obtained from the Neumann solu-
tion for the soil thawing front penetration when initial tempera-
tures are below 0 �C. In this case, conduction occurs in both the
thawed and frozen zones. Thus, unlike the Lunardini solution, the
Neumann solution can calculate the influence of different thawed
and frozen zone bulk soil thermal diffusivities. These differences
can be significant, particularly for high porosity soils, as ice has a
thermal diffusivity approximately eight times that of liquid water
near 0 �C [65].

Fig. 7 shows the thawing front penetration simulated by SUTRA
and the Neumann solution (Eqs. (12)–(14)) for a soil with an initial
temperature of �5 �C, a specified surface temperature of 5 �C, and a
soil porosity of 0.50 (run 15, Table 1). In this thawing scenario, the
bulk thermal diffusivity of the frozen zone was 110% greater than
the bulk thermal diffusivity of the thawed zone (Table A1). The
0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0 2 4 6 8 10

D
ep

th
 to

 th
aw

in
g 

fr
on

t, 
X 

(m
)

Time since thawing initiation (days)

Neumann SUTRA 

Fig. 7. Depth from surface to thawing front versus time since initiation of thawing
for the Neumann solution (Eqs. (12)–(14)) and SUTRA for an initial temperature Ti of
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maximum difference between the Neumann and SUTRA series in
Fig. 7 is 0.99 mm, which is slightly less than the vertical spatial
discretization of the SUTRA domain (1 mm).

4.3.2. Comparison of Lunardini solution and SUTRA
SUTRA simulations were also compared to the Lunardini solu-

tion for scenarios with significant Darcy velocities. Fig. 8 shows
the results obtained with the Lunardini solution and SUTRA for
vertical downward Darcy velocities of 10 and 100 m yr�1 (runs 9
and 10, Table 1). Other thawing scenarios (e.g., higher surface tem-
peratures, see Fig. 6) would better demonstrate the thermal influ-
ence of advection for these two Darcy velocities. However, the
intent of these simulations is to illustrate the potential of the
Lunardini solution to be employed as a benchmark solution, and
thus we focus on thawing scenarios with low Stefan numbers
and higher accuracies (Fig. 5). In Fig. 8, the differences between
the depths to the thawing front obtained from the SUTRA simula-
tions and the Lunardini solution after 20 days are �0.7 mm (�0.3%
difference) for v = 10 m yr�1 and �1.6 mm (�0.6% difference) for
v = 100 m yr�1.

It is likely that the very minor differences between the Lunardi-
ni and SUTRA series arise due to both inaccuracies associated with
the Lunardini solution and the numerical methods employed in
SUTRA. For this Stefan number, the difference between the Neu-
mann solution and the Lunardini solution with the Darcy velocity
set to 0.001 m yr�1 is �0.6 mm (run 4, Table 1). Thus, the implicit
errors in the Lunardini solution, which tends to slightly overesti-
mate the thawing front penetration even at low Stefan numbers
(Fig. 4), likely contributed to the noted differences between the
SUTRA and Lunardini series in Fig. 8. As previously noted, ad hoc
sensitivity analyses were conducted for the initial temperature,
soil freezing curve parameters, and the spatiotemporal discretiza-
tion. The SUTRA parameter values indicated in Table A1 produced
results that can be compared to the Lunardini solution. In general,
the very small differences obtained between the SUTRA and Lunar-
dini results were deemed to be acceptable given the approximate
nature of the Lunardini solution.

It should be noted that there is some ambiguity as to the loca-
tion of X in the numerical model simulations. The transition
between freezing and thawing occurs over a spatial range because
pore ice thawing occurs between temperatures Tf and Tres

(Table A1). In all of the SUTRA results graphically presented in this
paper, the depth to the thawing front (X, Fig. 1) was taken as the
location where temperature was first less than 0 �C. This repre-
sents the top of the partially frozen zone. The position where the
simulated matrix temperature first equals the residual freezing
temperature is the bottom of the partially frozen zone. Due to
the steep freezing curve employed, the thickness of this partially
frozen zone was at most 5 mm in the simulations shown in Fig. 8.

4.3.3. Recommended benchmarks
Appropriate benchmarks can be selected from the fifteen thaw-

ing scenarios presented in this paper (Table 1). Firstly, we recom-
mend that the Neumann solution simulation with initial
temperatures less than 0 �C (run 15, Table 1 and Fig. 7) be incorpo-
rated as a standard benchmark solution due to its ability to accom-
modate differences between the thermal diffusivities of the
thawed and frozen zones. The Neumann solution results for this
thawing scenario are tabulated for a duration of 20 days with an
interval of 0.01 days in Table S1 of the supplementary material
(‘recommended benchmark 1’).

A noted limitation of only employing the Neumann solution as a
benchmark is that advection is not considered. This limitation can
be overcome by utilizing both the Neumann and Lunardini
solutions as benchmarks. We therefore recommend the thawing
scenarios presented in Fig. 8 (v = 10 and 100 m yr�1, runs 9 and
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10, Table 1) as the Lunardini benchmark problems. These particular
scenarios are proposed because the Lunardini solution has been
shown to be reasonably accurate for this Stefan number (0.019,
Fig. 5). The SUTRA results matched the Lunardini solution
slightly better for v = 10 m yr�1 (run 9), but the influence of
advection is more pronounced for v = 100 m yr�1 (run 10). The
Lunardini solution results for these thawing scenarios are tabu-
lated for a duration of 20 days with an interval of 0.01 days in
Table S1 of the supplementary material (‘recommended bench-
marks 2 and 3’).
5. Summary and conclusions

Cold regions subsurface flow and heat transport models are
replete with differences in their underlying physics and numerical
solution methods. In the past, few benchmark problems have been
proposed to form inter-code comparisons, and these benchmarks
have rarely been solved with more than one code. Furthermore,
previously proposed analytical solution benchmarks for these
models ignore the thermal influence of water flow. However, the
primary advancement in recent cold regions subsurface heat trans-
port modeling is the inclusion of water flow and associated heat
advection. The Lunardini solution is particularly well-suited for a
benchmark solution for these cold regions flow and heat transport
models. To our knowledge, it is the only published analytical solu-
tion that accommodates conduction, advection, and pore water
phase change without invoking the limiting assumption that the
water flux is proportional to the rate of thaw. Assuming that the
water flux is proportional to the rate of thaw simplifies the math-
ematical solution process [36,37], but this approach makes the
problem more difficult to reproduce with numerical models.

This study has provided the first detailed derivation of the
Lunardini solution and discussed the limitations associated with
the steady-state assumption. In particular, we have demonstrated
(via comparisons to the exact Neumann solution) that the Lunardi-
ni solution is accurate in the case of negligible water flow provided
that the Stefan number is low. For realistic soil porosities and
thermal conductivities, low Stefan numbers can primarily be
achieved by specifying a low (albeit still >0 �C) surface temperature
boundary condition. For the soil thermal properties considered in
this study, the Lunardini solution relative error is only �0.32% after
20 days for a surface temperature of 1 �C, negligible Darcy velocity,
and a porosity of 0.5. Furthermore, we have demonstrated via
comparison to numerical modeling results that, in the case of
significant water flow, the Lunardini solution can still produce rea-
sonably accurate results. For instance, for the thawing scenario
having a Darcy velocity of 10 m yr�1 and a surface temperature
of 1 �C, the difference between the numerical results and the
Lunardini solution after 20 days was �0.3% (�0.7 mm).

We recommend that the Lunardini scenarios with v = 10 and
100 m yr�1 (Fig. 8 and Table S1, supplementary material) be imple-
mented as standard benchmarks for assessing the performance of
subsurface water flow and heat transport models that include pore
water phase change. We also recommend that future benchmark-
ing initiatives include the Neumann solution example provided
with initial temperatures less than 0 �C (Fig. 7 and Table S1, sup-
plementary material), as this scenario accommodates different
thermal diffusivities in the thawed and frozen zones. Future bench-
marking initiatives e.g., [40] will likely also employ complex
numerical solutions that more fully test the underlying equations
and numerical solution methods of emerging cold regions water
flow and energy transport simulators. However, analytical solu-
tions remain a valuable component of benchmarking exercises
because they eliminate errors associated with numerical solution
methods and thus create a standard that is independent of any par-
ticular model.
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Table A1
Input parameters for SUTRA and the analytical solutions.

Parameter Symbol Value Units

Hydraulic properties
Porosity e 0.50 (0.25)a –
Relative permeability b krel off –
Darcy velocity (downwards) v 0, 0.001, 10, and 100 m yr�1

Gravity g 0 m s�2

Water saturation (total) Sw 1 –
Sat. that undergoes phase change (Sw � Sres) Swf 1 (for solutions) –

Thermal properties
Thermal conductivity of thawed zone k 1.839 (2.458) W m�1 �C�1

Heat capacity of thawed zone cq 3.201 � 106 (2.711 � 106) J m�3 �C�1

Thermal diffusivity of thawed zone a 5.743 � 10�7 (9.067 � 10�7) m2 s�1

Thermal diffusivity of frozen zone af 1.205 � 10�6 (1.297 � 10�6) m2 s�1

Thermal dispersivity – 0c m
Density of water qw 1000 kg m�3

Specific heat of water cw 4182 J kg�1 �C�1

Heat capacity of water cwqw 4.182 � 106 J m�3 C�1

Latent heat of fusion for water Lf 334,000 J kg�1

Other thermal settings
Initial temperature Ti 0d �C
Freezing temperature (solutions) Tf 0 �C
Residual freezing temperature (SUTRA) Tres �0.0005e �C
Residual liquid saturation Sres 0.0001 –
Slope of freezing function b 1999.8 �C�1

SUTRA solver settings and spatiotemporal discretization
SUTRA element height – 0.001 m
Number of time steps to 20 days – �7,000,000 –
SUTRA time step size – 0.00001–0.0001 h

a Where applicable here and in other rows in this table, the first value given is for a porosity of 0.50, whereas the value in parentheses is for a porosity of 0.25.
b Note that because a water flux is specified at the top and bottom of the model and the medium was saturated (Fig. 2), the actual permeability is irrelevant. For the sake of

simplicity, we assumed no reduction in permeability due to pore ice formation.
c Thermal dispersivity is a parameter included in many models of coupled subsurface water flow and energy transport. Thermal dispersion is a thermal homogenizing

process that arises due to the tortuous flow path traveled by groundwater [67]. This phenomenon is not considered in the analytical solutions, and thus thermal dispersivity
was set to zero.

d The initial temperature for each of the analytical simulations was set to 0 �C (except for one Neumann solution run that had a Ti of �5 �C, run 15, Table 1 and Fig. 6). The
initial temperature could not be set at exactly 0 �C in SUTRA, or the medium would be initially fully thawed. Thus the initial temperature was set at a value (�0.001 �C)
slightly below the residual freezing temperature Tres.

e The complete freezing temperature (i.e. the temperature at residual liquid water saturation due to freezing) was increased to �0.01 �C for the SUTRA runs to match the
Neumann solution with initial temperatures of �5 �C (Fig. 6). This increase was required because the higher surface temperature in this run (5 �C) in comparison to the
surface temperatures of other runs (1 �C) caused soil thawing that was too rapid given the initially small time step.
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Appendix A

Contains Table A1.
Appendix B. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.advwatres.
2014.05.005.
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