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Heat is a useful tracer for quantifying groundwater–surface water interaction, but analyzing large
amounts of raw thermal data has many challenges. We present a computer program named VFLUX, writ-
ten in the MATLAB computing language, for processing raw temperature time series and calculating ver-
tical water flux in shallow sub-surface-water systems. The step-by-step workflow synthesizes several
recent advancements in signal processing, and adds new techniques for calculating flux rates with large
numbers of temperature records from high-resolution sensor profiles. The program includes functions for
quantitatively evaluating the ideal spacing between sensor pairs, and for performing error and sensitivity
analyses for the heat transport model due to thermal parameter uncertainty. The program synchronizes
and resamples temperature data from multiple sensors in a vertical profile, isolates the diurnal signal
from each time series and extracts its amplitude and phase angle information using Dynamic Harmonic
Regression (DHR), and calculates vertical water flux rates between multiple sensor pairs using heat trans-
port models. Flux rates are calculated every 1-to-2 h using four similar analytical methods. One or more
‘‘sliding analysis windows’’ can be used to automatically identify any number of variably spaced sensor
pairs for flux calculations, which is necessary when a single vertical profile contains many sensors, such
as in a high-resolution fiber-optic distributed temperature sensing (DTS) profile. We demonstrate the
new method by processing two field temperature time series datasets collected using discrete tempera-
ture sensors and a high-resolution DTS profile. The analyses of field data show vertical flux rates signif-
icantly decreasing with depth at high-spatial resolution as the sensor profiles penetrate shallow, curved
hyporheic flow paths, patterns which may have been obscured without the unique analytical abilities of
VFLUX.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

While heat has been used for many years as a tracer of ground-
water–surface water interaction (Anderson, 2005), several recent
developments have improved the process of estimating vertical
water flux to or from surface water using temperature time series,
including the introduction of one-dimensional analytical solutions
to the heat transport equation (Hatch et al., 2006; Keery et al.,
2007), improved methods for signal processing of raw temperature
time series (Keery et al., 2007; Young et al., 1999), and the deploy-
ment of many sensors in high-resolution profiles (Briggs et al.,
accepted for publication; Vogt et al., 2010). These advancements
have made the estimation of pore-water flux easier, more accurate,
and more useful, but their combined benefits have not yet been
compiled into a step-by-step workflow that can be easily auto-
ll rights reserved.
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mated for processing large amounts of thermal data or performing
complicated sensitivity analyses.

In streams, heat is a naturally occurring, non-reactive tracer
that is easy to measure and model, making it a practical tool for
studying water fluxes through the streambed (Constantz, 2008).
Numerical models of fluid and heat flow (e.g. Healy and Ronan,
1996; Vogel et al., 2010) have often been calibrated to fit temper-
ature patterns at specific boundaries (e.g. Niswonger and Prudic,
2003; Ronan et al., 1998; Vogel et al., 2011). Simplified analytical
models have also been developed for idealized boundary condi-
tions, such as the steady state model of Bredehoeft and Papadopu-
los (1965) and the transient model of Stallman (1965). Steady state
models were originally employed in the geothermal zone, but have
since been used to quantify exchange with surface water (e.g.
Schmidt et al., 2007). Lapham (1989) used vertical temperature
profiles beneath streams to quantify the rate of vertical water flow
using a numerical approximation of the one-dimensional, analyti-
cal heat transport equation of Stallman (1965). Analytical exten-
sions to the Stallman model have since been developed (Hatch
ertical pore-water flux from field temperature time series using the VFLUX
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et al., 2006; Keery et al., 2007) that solve for the one-dimensional
flux of fluid between two vertically-spaced temperature sensors
using the phase and amplitude changes of transient thermal
signals.

Analytical modeling of transient heat transport takes advantage
of the daily fluctuation in temperature that takes place in stream
water. As streams heat and cool during the diurnal cycle, a quasi-
sinusoidal temperature signal with a 24-h period propagates into
the streambed. The depth, speed, and strength of the propagation
of the thermal front depends on the heat capacity and conductivity
of water and sediment, as well as the volume of fluid moving ver-
tically through the sediment (Stonestrom and Constantz, 2003). By
measuring the attenuation of amplitude and the increase in phase
angle of the temperature signal with depth, it is possible to quan-
tify the magnitude and direction of the vertical component of
water flux (Hatch et al., 2006; Keery et al., 2007).

Temperature is easy and inexpensive to measure in streams and
the streambed, and the analytical models of Hatch et al. (2006) and
Keery et al. (2007) are relatively simple. However, processing raw
temperature time series and extracting the information necessary
to compute flux, namely amplitude and phase, is not trivial. Fluctu-
ations in stream temperature are caused not only by daily variation
in solar incidence, but by seasonality, weather patterns, precipita-
tion and snowmelt, stream shading, long-wave radiation, changes
in latent heat, upstream watershed characteristics, and even wind
(Caissie, 2006). Furthermore, temperature sensors have different
noise characteristics, depending on the technology used. Real-
world temperature time series therefore contain a variety of sig-
nals and noise, and filtering techniques are required to isolate
the signal of interest, in this case the 24-h, diurnal oscillation
(Hatch et al., 2006; Keery et al., 2007). After filtering, objective pro-
cedures are needed to extract signal amplitudes and phase angles
to compute flux rates.

A variety of methods have been used by previous researchers to
filter and analyze temperature time series to calculate fluid flux
rates. Hatch et al. (2006) isolated the diurnal signal using a cosine
taper band-pass filter and then selected daily temperature maxima
and minima (using a semi-automated computer program) to calcu-
late amplitude attenuation and time lag with depth. Fanelli and
Lautz (2008) similarly identified daily extrema manually, but did
not filter the raw temperature data before applying the Hatch
et al. (2006) method, producing quantifiable errors (Lautz, 2010).
Keery et al. (2007) used Dynamic Harmonic Regression (DHR)
(Young et al., 1999) both to isolate the diurnal signal and to extract
amplitude and phase information. Vogt et al. (2010) similarly used
the amplitude and phase output from a DHR analysis of tempera-
ture time series to solve for flux using the analytical solution of
Stallman (1965). Swanson and Cardenas (2010) avoided filtering
altogether by fitting a stationary sine function to individual day-
long periods of temperature records, and using the amplitude
and phase of the sine wave in the analytical equations of Hatch
et al. (2006) and Keery et al. (2007).

Recently, scientists have used heat modeling methods in re-
search on such diverse topics as streambed chlorobenzene concen-
trations (Schmidt et al., 2011), wetland phosphorus mobility
(Maassen and Balla, 2010), aquifer recharge from perennial pools
(Rau et al., 2010), potential culvert removal (Anderson et al.,
2010), hyporheic exchange around geomorphic features (Crispell
and Endreny, 2009; Fanelli and Lautz, 2008; Lautz et al., 2010),
streambed infiltration (Vogt et al., 2010), groundwater discharge
at stream cross-sections (Jensen and Engesgaard, 2011), and con-
taminated groundwater contribution to streams (Lautz and
Ribaudo, submitted for publication). However, these studies have
all used different methods for collecting, filtering, and analyzing
temperature time series and estimating vertical flux, some with
distinct flaws. Each researcher has had to devise individual solu-
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tions to—or simply ignore—a host of challenges created by field
temperature records, and they have been forced to develop their
own computational workflows to deal with the volume of thermal
data collected. Furthermore, researchers are increasingly collecting
very large datasets from many sensors in high-resolution temper-
ature profiles using fiber-optic distributed temperature sensing
(DTS) methods (e.g. Briggs et al., accepted for publication; Vogt
et al., 2010). This proliferation in data gives researchers greater
flexibility when selecting the ideal spacing between temperature
sensors (Hatch et al., 2006), and allows them to detect changes
in vertical flux with depth to greater precision, but also creates a
computational problem in which the number of potential flux cal-
culations increases quadratically with the number of sensors.

We believe that heat transport modeling would be used more
often by a wider range of researchers if an automated, step-by-step
program were freely available to easily and consistently calculate
vertical fluid flux from raw temperature time series, without
resorting to shortcuts in signal processing. Such an automated
workflow in the form of a computer program would make process-
ing very large amounts of data from many temperature sensors
more practical and flexible. The wide availability and use of such
a program would support a more consistent application of time
series analysis methods among different studies by hydrologists,
ecologists, geochemists, engineers, and others. By automating the
calculation of vertical fluid flux, the program may also help avoid
computational error.

In this paper, we present a computer program that automates
the entire process of calculating vertical flux rates from raw tem-
perature time series in the shallow beds of streams or other surface
water bodies. The method builds upon previous work (Hatch et al.,
2006; Keery et al., 2007; Vogt et al., 2010) and adds new tech-
niques for processing large numbers of temperature records from
high-resolution sensor profiles with greater spatial and temporal
resolution. We automate the new method using a computer pro-
gram named VFLUX (Vertical Fluid [Heat] Transport Solver). The
program formats, synchronizes, and resamples temperature data
from multiple sensors in a vertical temperature profile (TP), then
isolates the diurnal signal from each time series using DHR, ex-
tracts amplitude and phase information, and calculates vertical
flux rates between multiple sensor pairs using a ‘‘sliding analysis
window’’ and the analytical models of Hatch et al. (2006) and
Keery et al. (2007). Flux rates are calculated every 1-to-2 h,
depending on the sampling rate of the original data, or at every
sample interval if the original data was sampled more coarsely
than every 2 h. The program is written in the MATLAB computing
language, and is designed to integrate with other command-based
MATLAB functions or scripts, allowing it to be easily modified and
incorporated into custom workflows. To illustrate this point, we
demonstrate two MATLAB functions that run VFLUX iteratively in
order to perform analyses of error due to thermal parameter uncer-
tainty, as well as sensitivity of the model to each thermal parame-
ter. The VFLUX program will be useful to other researchers who
need a flexible and robust method for automatically calculating
vertical flux rates from profiles of temperature sensors, including
complex error analysis, and especially for practitioners of high-res-
olution DTS sensors. We demonstrate our method and the func-
tions of VFLUX by processing two field temperature time series
datasets collected using different sensor technologies. These exam-
ples illustrate the challenges associated with modeling real-world
time series, and how they can be overcome using the VFLUX meth-
od and program.

At the time of publication, only one automated method for pro-
cessing raw temperature time series and calculating vertical flux
has been published as a computer program, named Ex-Stream
(Swanson and Cardenas, 2011). VFLUX differs from the program
of Swanson and Cardenas in several ways. Ex-Stream is operated
ertical pore-water flux from field temperature time series using the VFLUX
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through a graphical user interface, while VFLUX is a command-line
tool executed using well-documented commands, which allows it
to be called by custom scripts and easily incorporated into other
MATLAB programs. VFLUX employs DHR for extracting the diurnal
signal from a time series and estimates changing flux at hourly
time scales, while Ex-Stream operates by fitting a static sine func-
tion to the raw data day-by-day (Swanson and Cardenas, 2011),
which may not fit well to parts of the time series that deviate sig-
nificantly from a perfect sinusoid, such as during weather pattern
shifts, and only allows flux calculations at daily intervals.
Ex-Stream also uses two steady-state solutions (Bredehoeft and
Papadopulos, 1965; Schmidt et al., 2007), in addition to the analyt-
ical solutions of Hatch et al. (2006) and Keery et al. (2007). Finally,
VFLUX is designed for calculating flux between many variably-
spaced sensor pairs in a single profile of temperature sensors,
which is useful for detecting changing flux with depth and for
identifying the ideal sensor spacing for a particular experiment,
and is necessary when employing many sensors, such as in a
high-resolution DTS profile. Ex-Stream only calculates flux be-
tween one pair of sensors in a profile at a time.

To our knowledge, VFLUX is the first published computer pro-
gram for estimating water flux that automates a complete ap-
proach to data pre-processing of raw temperature time series,
including multiple sensor synchronization, resampling, and filter-
ing of a single tracer frequency with a robust method like DHR. It
is also the first method that uses a ‘‘sliding window’’ to provide flux
results at many depths with high spatial resolution. The program
includes new tools for evaluating the sensitivity of the heat trans-
port model to sensor spacing, which allows the user to intelligently
determine the ideal sensor spacing for a particular application. The
VFLUX package also includes two separate functions that perform
analyses of model sensitivity to thermal parameters and estimates
of error due to parameter uncertainty. Automated error analysis
and sensitivity programs such as these have not yet been pub-
lished, and many recently published papers do not include error
or uncertainty estimates for reported flux values (e.g. Schmidt
et al., 2011; Vogt et al., 2010). The analysis of field temperature
data in this paper is also the first high-resolution presentation, to
our knowledge, of vertical flux rates that decrease with depth
due to penetration through curved hyporheic flow cells.
2. Methods

2.1. Field data collection

A set of thermal records was collected in the bed of Ninemile
Creek, a fourth-order stream (contributing area to site: 177 km2)
in Marcellus, New York between August 27 and September 18,
2009. The streambed at the site was composed of cobbly, sandy
gravel with some silt. Thermal parameters of the saturated sedi-
ment were estimated through field observation and the guidelines
provided by Lapham (1989), and are summarized in Table 1. Seven
iButton Thermochron band-gap temperature sensors and loggers
(Maxim Integrated Products, Inc., Sunnyvale, CA) were embedded
in a steel rod to make a vertical TP (Fig. 1A). The steel TP rod
was driven into the streambed at the head of a riffle so that one
sensor was 0.05 m above the streambed interface, and the others
were positioned at 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30 m below
the streambed interface. The sensors have a resolution of
0.0625 �C, a manufacturer-reported accuracy of ±0.5 �C and a man-
ufacturer-reported thermal response time of 130 s, much shorter
than our sampling interval. In a laboratory test of 80 iButtons,
including those used in the present study, all sensors were precise
within a range of 0.12 �C in an ice bath and at room temperature.
The sensors were programmed to record temperature every
Please cite this article in press as: Gordon, R.P., et al. Automated calculation of v
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10 min, for a total of 3070 measurements at each sensor. All seven
sensors were synchronized prior to deployment, so that measure-
ments were taken on the same time schedule. There were no
breaks in sampling, so the measurements were evenly spaced in
time throughout.

The second set of thermal records was collected in the bed just
upstream of a small beaver dam in Cherry Creek, a second-order
stream (contributing area to site: 31.1 km2) in Lander, Wyoming
between July 11 and August 11, 2010 (see Briggs et al., accepted
for publication, for further details). The streambed was composed
of interbedded organic-rich silt, sand, and gravels. Thermal param-
eters of the saturated sediment were again estimated through field
observation and the relationships presented by Lapham (1989),
and are summarized in Table 1. Temperature measurements were
collected using a fiber-optic distributed temperature sensing (DTS)
method, in which the temperature-dependent backscatter of a la-
ser pulse is used to continuously estimate temperature along a
glass fiber (Dakin et al., 1985; Selker et al., 2006). The fiber used
at Cherry Creek was housed in stainless-steel cladding and
wrapped in a tight coil around a one-meter long, threaded PVC
rod (Fig. 1B). An Agilent Distributed Temperature Sensor (model
N4386A, Agilent Technologies, Inc., Santa Clara, CA) was used to
measure temperature every meter along the cable length, yielding
a temperature measurement every 0.014 m along the length of the
vertical TP rod. The rod was driven vertically into the streambed
and positioned such that temperature was measured at 57 locations
between 0.014 and 0.78 m depth below the streambed interface.
The DTS instrument in this experimental configuration had a preci-
sion of ±0.2 �C, estimated using the manufacturer’s software, and
was calibrated using mixed thermal baths monitored with iButton
Thermochrons (±0.5 �C accuracy, 0.0625 �C resolution, 130 s ther-
mal response time). The DTS system recorded temperature every
20 min, for a total of 2182 measurements at each of the 57 depths
along the TP. Due to the continuous nature of DTS, measurements
of temperature at different depths were all synchronized in time;
however, because the battery of the DTS unit needed to be changed
daily, some sample times were missed. There were 30 gaps in the
data that were less than 81 min in length, and 3 gaps due to
equipment malfunctions that were between 203 and 524 min in
length. The missing samples were linearly interpolated from the
original data and inserted into the time series, so that the time
series processed with VFLUX was evenly spaced in time.

2.2. The VFLUX program

The temperature time series from Ninemile Creek and Cherry
Creek were processed with the VFLUX program to calculate vertical
water flux rates at multiple depths in the streambeds of the study
sites. VFLUX is distributed as a MATLAB toolbox, a set of functions
written in the MATLAB computing language that are designed to
run in the MATLAB environment. The program was developed in
MATLAB 7.10.0 (R2010a) (The MathWorks, Inc., Natick, MA). The
VFLUX functions are executed by typing commands at the MATLAB
command prompt, and can also be called by external functions or
integrated into custom scripts. The functions are distributed as
open-source code (in MATLAB M-files) that is free to use, easily
modified, and well-commented. The VFLUX program files are
included in Supplementary material available with the online ver-
sion of this article, and the most up-to-date version may be down-
loaded from the following web site: http://hydrology.syr.edu/
lautz_group/vflux.html. Full documentation is provided along with
the program, which explains in detail the program’s commands, in-
puts, outputs, options, and switches.

Given a set of temperature time series from a single vertical
sensor profile and the depth of each sensor, the VFLUX program
will perform the following six major steps (see Fig. 2): (1) format
ertical pore-water flux from field temperature time series using the VFLUX
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Table 1
Values of the physical parameters used to calculate flux rates at Ninemile Creek, NY and Cherry Creek, WY. Values listed in table are also the base or mean
values used in the sensitivity and Monte Carlo analyses for Ninemile Creek. The standard deviation used in the Monte Carlo analysis is shown in parentheses.
Thermal properties were estimated based on guidelines in Lapham (1989) and values in Fetter (2001) and CRC (2011).

Property Symbol Units Value

Ninemile Creek Cherry Creek

Total porosity n Dimensionless 0.20 (0.04)a 0.35
Baseline thermal conductivity ko J s�1 m�1 �C�1 2.26 (0.31) b 1.30
Thermal dispersivity b m 0.001 (0) c 0.001
Volumetric heat capacity of sediment Cs J m�3 �C�1 2.09 � 106 (3.1 � 104) d 2.09 � 106

Volumetric heat capacity of water Cw J m�3 �C�1 4.18 � 106 (2.1 � 104) e 4.18 � 106

a Low and high n values for sensitivity analysis are 0.18 and 0.34, respectively.
b Low and high ko values for sensitivity analysis are 1.21 and 2.47 J s�1 m�1 �C�1, respectively.
c Low and high b values for sensitivity analysis are 0 and 0.1 m, respectively.
d Low and high Cs values for sensitivity analysis are 2.03 � 106 and 2.15 � 106 J m�3 �C�1, respectively.
e Low and high Cw values for sensitivity analysis are 4.14 � 106 and 4.23 � 106 J m�3 �C�1, respectively.
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Fig. 1. (A) A diagram of a typical vertical temperature profile (TP), showing five
iButton Thermochron temperature sensors installed in the streambed and one in
the water column, which gives the temperature of the water at the streambed
interface. The sensors are not necessarily evenly-spaced. The sliding window (in
this case, two sensor-spacings long) identifies sensor pairs between which flux will
be calculated. (B) A diagram of a high-resolution DTS temperature profile, showing
a coil of fiber-optic cable wrapped around a threaded PVC rod. Using a distributed
temperature sensing device, the temperature of short segments (0.024 m) of the rod
length can be measured, which are equivalent to temperature sensors. The sliding
window again identifies sensor pairs for flux calculations.
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and synchronize all the time series to a single vector of sampling
times; (2) low-pass filter and resample the time series; (3) isolate
the fundamental signal (the signal of interest, typically diurnal)
using DHR; (4) extract amplitude and phase information for the
fundamental signal using DHR; (5) identify pairs of sensors based
on one or more ‘‘sliding analysis windows’’; and (6) calculate ver-
tical water flux rates between the identified sensor pairs. Addi-
tional programs included with the VFLUX package perform
sensitivity analyses on the thermal input parameters, and calculate
confidence intervals for flux estimates based on thermal parameter
uncertainty.
2.2.1. Format and synchronize time series
Time series data for each temperature sensor are input as a vec-

tor (a one-dimensional array) of evenly-spaced sample times, in
days, and a corresponding vector of observed temperatures, in de-
grees C. If all the sensors were sampled at the same time schedule
(i.e., the time vectors for all sensors have the same start time, end
time, and sampling rate), then VFLUX simply formats the time ser-
ies into a MATLAB structure array to be processed by the remainder
of the program. However, if different sensors in the temperature
profile were sampled at different time schedules (i.e., they have
different start or end times, and/or different sampling rates), then
VFLUX synchronizes all the time series by reducing them to the
‘‘lowest common denominator’’; that is, it trims all the input series
to the shortest time range common to all and, if necessary, linearly
interpolates all the input series at the same sampling rate. This cre-
ates a single time vector that is common to all the temperature
data. The interpolation method can easily be changed to a spline
interpolation or another method.
2.2.2. Low-pass filter and resample time series
The second step in the VFLUX program is to reduce the sam-

pling rate to approximately 12–24 samples per fundamental cycle,
if the original sampling rate was greater. This step improves the fil-
tering results because VFLUX uses the standard frequency-domain
optimization method within the Dynamic Harmonic Regression
(DHR) model. This optimization method is sensitive to oversam-
pling, and functions best when the sampling rate is not much high-
er than the frequency of the oscillation of interest (Young et al.,
1999; Włodzimierz Tych, personal communication, March 3,
2011). If the time series are oversampled, then the signal of interest
becomes compressed in the frequency domain, and the optimiza-
tion method is ineffective at identifying the model hyperparame-
ters. Although it is beneficial in this case to resample at a lower
rate before applying DHR, oversampling in the collection of raw
data is still desirable, because it allows for the identification and
reduction of noise by low-pass filtering during the resample
ertical pore-water flux from field temperature time series using the VFLUX
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process, and it avoids the greater problem of undersampling. If the
raw data is undersampled during collection (fewer than approxi-
mately 12 samples per cycle), then important information about
the signal may be irrecoverably lost (Box et al., 1994).

VFLUX first calculates an appropriate integer factor by which to
reduce the sampling rate (called rfactor). The program then deci-
mates the time vector by this rate, keeping every rfactor-th sample
time and discarding the rest. Alternately, rfactor can be specified by
the user when calling the VFLUX program. VFLUX then resamples
each temperature vector using an anti-aliasing, lowpass FIR (finite
impulse response) filter designed with a Kaiser window and deci-
mates the filtered signal by rfactor, discarding samples that are not
needed. VFLUX reduces the edge effects of the filtering process by
reflecting and mirroring the temperature vector at both ends as
padding, and then discarding this padding after running the resam-
ple command.

The low-pass filter reduces high-frequency noise that is inher-
ent in the natural temperature signal or is an artifact of the sensor
technology. The anti-aliasing properties of the filter prevent noise
from reflecting around the Nyquist frequency and disrupting the
signal identification in the next step.

2.2.3. Isolate the fundamental tracer signal
The third step in the VFLUX program is to isolate a tracer signal

of a single fundamental frequency (typically the diurnal signal).
This is performed using DHR as implemented in the Captain Tool-
box (Young et al., 2010), a set of MATLAB functions developed at
Lancaster University. DHR is a method for non-stationary time ser-
ies analysis that is particularly useful for extracting harmonic sig-
nals from dynamic environmental systems (Young et al., 1999).
DHR was first used in hydrologic heat modeling by Keery et al.
(2007). The driving temperature oscillation in a stream system
changes in time due to weather and seasonality, and vertical water
flux rates may also change in time; therefore, the amplitude and
phase of the diurnal signal in the streambed are also time-varying,
and a non-stationary approach to signal extraction is necessary.
DHR, a simplification of the Unobserved Component model, has
the following form:

yt ¼ Tt þ Ct þ et ð1Þ

where yt is the observed time series, Tt is a trend or zero-frequency
component, Ct is a cyclical component, and et is an irregular, white-
noise component (Young et al., 1999). The cyclical term is modeled
as a sum of the fundamental signal and its associated harmonics:

Ct ¼
XN

i¼1

½ai;t cosðxitÞ þ bi;t sinðxitÞ� ð2Þ

where ai,t and bi,t are stochastic time-varying parameters (TVPs) and
x1,x2, . . . ,xN are the fundamental frequency (x1) and its harmon-
ics (xi = i x1) up to the Nyquist frequency (xN). The trend compo-
nent Tt can also be considered as a zero-frequency term (x0 = 0)
incorporated into the cyclical term sum. This DHR model can be
thought of as a non-stationary extension of the discrete Fourier
transform, where the amplitude and phase of each time series com-
ponent themselves change with time. Identification of the TVPs is
achieved in a stochastic state space formulation using two-step Kal-
man filtering and fixed-interval smoothing (Young et al., 1999).

VFLUX calls the DHR function for each time series to separate
the fundamental cyclical signal from the trend, noise, and harmon-
ics. In practice, only the harmonic components that are present in
the original temperature data need to be identified, typically x1,
x2, and x3. Therefore, by default VFLUX attempts to identify a
trend, the fundamental signal (x1), and the first and second har-
monics (x2 and x3) using an auto-regression (AR) frequency spec-
trum created with the Captain Toolbox. VFLUX displays a
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diagnostic plot of the AR spectrum for each time series, allowing
the user to evaluate whether the appropriate number of harmonics
was identified. The specific harmonics, and the method that VFLUX
uses to identify them, can be modified by the user. VFLUX then fits
the DHR model to the AR spectrum, by optimization to a non-linear
least-squares objective function using the Captain Toolbox (Young
et al., 1999). The AR spectrum and the model fit are plotted and
displayed to the user. Finally, VFLUX filters and isolates the trend,
fundamental signal, identified harmonics, and noise components.
These components are then plotted and displayed to the user.

2.2.4. Extract amplitude and phase information
The fourth step in the VFLUX program is performed during the

DHR analysis above. The amplitude and phase of any harmonic
component at any discrete time can be calculated by the
equations:

Ai;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i;t þ b2
i;t

q
ð3Þ

/i;t ¼ tan�1 ai;t

bi;t

� �
ð4Þ

where Ai,t is the amplitude and /i,t is the phase angle for the com-
ponent with frequency xi at time t (Vogt et al., 2010). The Captain
Toolbox function ‘dhr’ supplies the amplitude and phase angle of
the fundamental frequency at each time step in the resampled tem-
perature time series, producing an amplitude time series and a
phase time series for each sensor. From Eq. (4), the phase angle re-
ported by DHR must be between �p/2 and p/2; it is therefore pos-
sible that the phase angle of a time series reported by DHR may
jump from p/2 to �p/2 or from �p/2 to p/2 during the duration
of the time series. VFLUX converts the phase angle into a total phase
offset for each sample of each time series by adding p whenever the
phase time series jumps from p/2 to �p/2, and subtracting p when-
ever the phase time series jumps from –p/2 to p/2.

2.2.5. Identify sensor pairs
The analytical methods of Hatch et al. (2006) and Keery et al.

(2007) (the Hatch and Keery methods) calculate water flux be-
tween a single pair of vertically-spaced temperature sensors. If
more than two sensors are deployed in the same profile, multiple
combinations of sensors can be used to calculate vertical flux.
The multiple sensor pairs may have different midpoint depths, dif-
ferent separation distances, and/or they may overlap in space (for
an example, see Jensen and Engesgaard, 2011). When a TP contains
many sensors, such as in a high-resolution DTS profile, the number
of possible combinations of sensors can become very large (equal
to N(N � 1)/2 in a profile of N sensors). The main benefit of using
DTS technology in a vertical temperature profile is the high spatial
resolution and therefore the large number of effective sensors
available, which allow for many possible sensor spacings at differ-
ent depths. A large number of possible sensor pairs with a range of
separation distances can be very useful to help identify the ideal
sensor spacing for a particular flux rate and set of field conditions
(Hatch et al., 2006). It is also important to have control over the
depth of the sensor pairs in order to detect changes in the vertical
component of hyporheic flux, which may vary significantly with
depth (Buffington and Tonina, 2009).

The large number of potential pairs in a high-resolution DTS
profile leads to a very large number of calculations. VFLUX is de-
signed to automatically identify any number of sensor pairs
through the use of one or more ‘‘sliding analysis windows’’. The
window(s) are specified by the user in units of ‘‘sensor-spacings’’
when calling the VFLUX program. The actual distance between sen-
sors is not used for identifying pairs, so sensors do not need to be
evenly-spaced. For example, a window of 2 sensor-spacings is de-
picted in Fig. 1A. As this analysis window slides from the top of the
ertical pore-water flux from field temperature time series using the VFLUX
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TP to the bottom, it identifies all the sensor pairs that are separated
by 2 spacings. With a total of 6 sensors in the profile, this window
would identify sensors 1 and 3, 2 and 4, 3 and 5, and 4 and 6 as
pairs. Multiple windows can be defined in a single VFLUX run; if
we included a window of 1 sensor-spacing in the above example,
then VFLUX would also identify sensors 1 and 2, 2 and 3, 3 and
4, 4 and 5, and 5 and 6 as pairs. The maximum number of possible
pairs in this example is 15, which would all be identified by defin-
ing windows of 1–5 sensor-spacings.

When processing the data from Ninemile Creek with VFLUX,
every possible window was used, i.e., 1–6 sensor spacings, which
correspond to sensor separation distances of 0.05, 0.10, 0.15,
0.20, 0.25 and 0.30 m. This leads to 21 total sensor pairs. In the case
of Cherry Creek, the high-resolution DTS profile was processed
with windows of 8, 9, 10, 11, and 12 sensor spacings, which corre-
spond to sensor separation distances of 0.110, 0.124, 0.138, 0.152,
and 0.166 m, for a total of 235 sensor pairs. VFLUX performed flux
calculations at each 2-h time step for every pair of sensors that was
separated by any of these distance values. A total of 4809 flux cal-
culations were made with the data from Ninemile Creek, and
85,540 flux calculations with the data from Cherry Creek.

2.2.6. Calculate vertical flux
The sixth and final step in the VFLUX program is to calculate

vertical water flux between the identified sensor pairs. The flux va-
lue calculated for each pair is assigned to a point equidistant be-
tween the sensors, referred to as the center-of-pair depth. The
Hatch and Keery methods are both analytical solutions to the
one-dimensional heat transport equation:

dT
dt
¼ je

d2T
dz2 � q

Cw

C
dT
dz

ð5Þ

where T is temperature (�C), t is time (s), je is the effective thermal
diffusivity of the saturated sediment (m2 s�1), z is depth (m), q is
fluid flux (m s�1), C is the volumetric heat capacity of the saturated
sediment (J m�3 �C�1), and Cw is the volumetric heat capacity of the
water (Goto et al., 2005; Stallman, 1965). C is calculated as the
mean of Cw and Cs, the volumetric heat capacity of the sediment
grains, weighted by total porosity. Both Hatch et al. (2006) and
Keery et al. (2007) developed methods to solve for q in Eq. (5) by
measuring the attenuation of the amplitude of a quasi-sinusoidal
temperature signal as it propagates vertically through the stream-
bed, or by measuring the speed at which it propagates.

The analytical solution provided by Hatch et al. (2006) solves
for the vertical water flux between two sensors as a function of
either amplitude or phase differences between the sensors’ tem-
perature signals:

q ¼ C
Cw

2je

Dz
ln Ar þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ v2

2

r !
ð6Þ

jqj ¼ C
Cw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 2

4pDtje

PDz

� �2
s

ð7Þ

where q is vertical fluid flux in the downward direction (m s�1), Ar is
the ratio of amplitudes (a measure of amplitude attenuation) be-
tween the lower sensor and the upper sensor (dimensionless), Dz
is the distance between the two sensors in the streambed (m), v
is the velocity of the thermal front (m s�1), Dt is the time lag (a
measure of the speed of signal propagation) between the two tem-
perature signals (s), P is the period of the temperature signal (s), and
a is defined by:

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4 þ 8pje

P

� �2
s

ð8Þ
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Effective thermal diffusivity, je, which incorporates conductivity
and dispersivity, is given by:

je ¼
ko

C

� �
þ bjv f j ð9Þ

where ko is the baseline thermal conductivity (i.e., thermal conduc-
tivity without the dispersive effect of fluid flow) of the saturated
sediment (J s�1m�1 �C�1), b is thermal dispersivity (m), and vf is
the linear particle velocity (m s�1) (Hatch et al., 2006).

Note that flux, q, is a true volumetric flux rate (volume per area
per time), while linear particle velocity, vf, is a true velocity (dis-
tance per time), and both are distinct from the thermal front veloc-
ity, v, despite all having the same units. The relationships between
these terms are:

v f ¼
q
ne

ð10Þ

q ¼ C
Cw

v ð11Þ

where ne is the effective porosity (dimensionless) (Hatch et al.,
2006).

The analytical solution to the Stallman (1965) equation pro-
vided by Keery et al. (2007) is similar to the Hatch method, but
does not include thermal dispersivity. Vertical water flux is again
calculated as a function of amplitude or phase differences (Keery
et al., 2007):

H3 lnAr

4Dz

 !
q3� 5H2ln2Ar

4Dz2

 !
q2þ 2Hln3Ar

Dz3

 !
qþ pC

koP

� �2

� ln4Ar

Dz4 ¼0 ð12Þ

jqj¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CDz
DtCw

� �2

� 4pDtko

PDzCw

� �2
s

ð13Þ

where H = C/ko. Note that in both Eqs. (7) and (13), the phase meth-
ods only give the magnitude of flux, and not its direction.

In order to apply the Hatch and Keery methods, VFLUX first
must calculate the amplitude ratio and time lag at each time step
(i.e., at each sample) in the resampled and filtered fundamental
signal. At each sample (time t), the time lag, Dt, is defined by:

Dt ¼ P
2p
ð/zþDz;tþDt � /z;tÞ ð14Þ

where /z,t is the phase angle of the sensor at depth z and at time t
(see Eq. (4)), and /z+Dz,t+Dt is the phase angle of the sensor deeper by
Dz at time t + Dt (Vogt et al., 2010). However, because Dt must be
known to determine the phase angle at t + Dt, and because the
phase angle typically changes slowly in time on a daily scale, we as-
sume it is generally safe to calculate the time lag using the
estimate:

Dt � P
2p ð/zþDz;t � /z;tÞ ð15Þ

which is the formulation used in VFLUX. The program then calcu-
lates the amplitude ratio, Ar, by:

Ar ¼
AzþDz;tþDt

Az;t
ð16Þ

where Az,t is the amplitude of the sensor at depth z and at time t (see
Eq. (3)), and Az+Dz,t+Dt is the amplitude of the sensor deeper by Dz at
time t + Dt (Keery et al., 2007). The amplitude ratio and time lag are
illustrated in Fig. 3.

VFLUX calculates vertical water flux, q, for each sample in the
resampled time series using the Hatch amplitude and phase
methods (Eqs. (6) and (7)) and the Keery amplitude and phase
methods (Eqs. (12) and (13)). The sediment and thermal properties
total porosity, dispersivity, baseline thermal conductivity, and
ertical pore-water flux from field temperature time series using the VFLUX
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volumetric heat capacity of the sediment and water must be input
when running VFLUX, and the other parameters in Eqs. (6), (7),
(12), and (13) are calculated by the program.

Because of the relationship in Eq. (11), the thermal front velocity
is found on both sides of Eqs. (6) and (7) and they must be solved
iteratively. VFLUX solves Eqs. (6) and (7) by subtracting q from both
sides of the equation and then finding the value of q at which the
right side of the equation equals zero. Eq. (12) must be solved by
finding the roots of the third-order polynomial on the left side. At
least one root must be real, and the other two may be real or com-
plex, although only a result with one real root represents a true
physical flux rate (Keery et al., 2007). VFLUX solves the third-order
polynomial and only accepts a single real root as the value for q. If
all three roots are real, then VFLUX warns the user and automati-
cally assigns a null value (Keery et al., 2007). Eq. (13) is solved for
|q| explicitly as written. If any value for Ar, Dt, or q cannot be calcu-
lated for any reason during a VFLUX run, then a null value is as-
signed, a warning is displayed to the user and the reason is
described. The most common reasons that VFLUX fails to calculate
flux are that Ar is greater than or equal to one or Dt is less than or
equal to zero (both usually caused by non-ideal sensor spacing),
or an attempt to find roots failed to converge on a real value.

There is an optional switch in the VFLUX program that can be
set to also exclude flux values (write a null value) if the calculated
flux estimate is outside a specified range of optimal sensitivity.
This sensitivity check is only available for the Hatch amplitude
method, and must be enabled in the VFLUX code. As described in
Results and Discussion below, Hatch et al. (2006) identified a range
of flux values for which the analytical heat transport model is most
sensitive. This range depends on the sensor spacing Dz and the
specific thermal properties, and is based on the slope of the ampli-
tude ratio versus flux curve, or the derivative dAr/dq (Hatch et al.,
2006). If this slope is too low, which occurs at very high and low
Ar values, then small errors in the amplitude ratio can cause large
errors in flux. If this option is enabled, VFLUX will calculate dAr/dq
and assign a null value if the derivative is below a certain value,
0.001 d m�1 by default (after Hatch et al., 2006). Ultimately, viola-
tions of this sensitivity range are caused by sensors that are spaced
too close together (the amplitude ratio is too close to 1) or too far
apart (the amplitude ratio is too close to 0), therefore, this
low-derivative check acts like an additional constraint on the ideal
sensor spacing.
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When the VFLUX program runs to completion, it creates four
data matrices containing the results of the flux calculations: one
matrix each for the Hatch amplitude method, Hatch phase method,
Keery amplitude method, and Kerry phase method, plus a vector
containing the time at which each flux calculation was made.
VFLUX also creates metadata matrices that describe the sensor
pairs used for each set of flux calculations, and the thermal param-
eters used in the heat transport models. At the end of a successful
VFLUX run, the program can optionally enter a results visualization
routine. If selected by the user, the visualization routine displays
several plots, containing raw and filtered time series, amplitude
and phase information, and final flux results through time for all
four methods. Default MATLAB zooming, panning, and editing tools
can be used to customize the plots. The visualization routine also
can display bar charts of successful flux calculations for different
sensor pairs and window sizes, to help in the analysis of ideal sen-
sor spacing, as discussed below. These plots show the percent of
time steps for which flux was successfully calculated for each sen-
sor depth and each window size. This visualization illustrates
which sensor pair combinations are within the ideal sensitivity
range of the models. Other combinations of results can be dis-
played after exiting VFLUX by plotting flux through time using
the ‘plot’ commands in MATLAB.

It is recommended that the first 2 or 3 days of flux data from the
beginning and end of the data collection periods be discarded, due
to the edge effects of digital filtering (Hatch et al., 2006; Keery
et al., 2007), although that choice is left up to the user and is not
implemented in VFLUX. In the case of the field data from Ninemile
Creek and Cherry Creek used in this study, the first and last 2 days
of flux results were discarded.

2.2.7. Sensitivity and uncertainty estimation programs
The VFLUX package contains two additional programs, ‘‘vflux-

sens’’, for performing sensitivity analyses, and ‘‘vfluxmc’’, for per-
forming Monte Carlo error estimations. These programs both run
the VFLUX method iteratively in order to produce different esti-
mates of flux from different thermal parameters. The sensitivity
analysis program is run using similar inputs to the standard VFLUX,
but instead of single thermal and sediment input parameters, the
user inputs a low and high value for each parameter in addition
to the estimated or measured value (‘‘base’’ value). The program
first runs VFLUX only for the base values, then subsequently runs
VFLUX twice for each parameter, using the input high and low val-
ues, while maintaining all other parameters at the base values. At
the end, for each sensor pair, the program displays a series of plots,
each showing maximum and minimum values of flux through time
for each of the varied parameters. The sensitivity analysis was per-
formed for the data collected at Ninemile Creek, with sediment and
thermal parameter ranges as shown in Table 1. The high and low
values in Table 1 represent the full range of typical physical values
for coarse-grained sediment and water between 0 and 25 �C from
Lapham (1989), Fetter (2001), and CRC (2011).

The Monte Carlo error estimation program can be used to create
statistical confidence intervals around flux estimates through time.
Such confidence intervals are needed to determine if flux estimates
are significantly different from zero, or to compare differences in
flux between different sites or even different depths. Many recent
publications that report flux values calculated with analytical heat
transport methods do not include confidence intervals (e.g. Crispell
and Endreny, 2009; Engelhardt et al., 2011; Schmidt et al., 2011;
Vogt et al., 2010), making it difficult to determine if flux estimates
are significant. The Monte Carlo estimation program has similar in-
puts to the standard VFLUX and sensitivity analysis programs, but
takes as inputs mean and standard deviation values for each
thermal and sediment parameter, which can be based on estima-
tions or actual laboratory or field measurements. The program
ertical pore-water flux from field temperature time series using the VFLUX
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performs 1000 realizations (by default). For each realization, the
program selects a set of random parameters from normal distribu-
tions with mean and standard deviation, as input. All but two of
the parameters are uncorrelated, so that the random values se-
lected in each realization are unrelated. Thermal conductivity
and porosity are inversely correlated around their respective
means, following guidelines in Lapham (1989), which show that
thermal conductivity varies with dry bulk density. Porosity also af-
fects the calculated value of C, the volumetric heat capacity of the
sediment–water matrix. In each of the realizations, the program
runs the standard VFLUX analysis with the randomly generated
parameter values. Flux values are calculated for each sensor pair
and each point in time during each of the 1000 realizations, and
then standard deviation values are calculated through all 1000
realizations. Finally, approximate 95-percent confidence intervals
are created around the mean flux values by adding and subtracting
two standard deviations from the mean flux values. This Monte
Carlo analysis was performed for the data collected at Ninemile
Creek, with parameter means and standard deviations as shown
in Table 1.
3. Results and discussion

Two examples of raw temperature time series from Ninemile
Creek in New York and Cherry Creek in Wyoming are plotted in
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Fig. 4. Examples of raw temperature time series data from (A) Ninemile Creek at
0.05 m and 0.30 m depth and (B) Cherry Creek at 0.097 m and 0.51 m depth. Note in
both plots the amplitude attenuation and time lag between the shallower and
deeper sensors, the asymmetric saw-toothed pattern of daily increases and
decreases in temperature, the changing trend through time, and the amount of
noise present in each time series.
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Fig. 4. A diurnal temperature signal with a 24-h period of oscilla-
tion is obvious at 0.05 and 0.30 m depths at Ninemile Creek
(Fig. 4A) and at 0.097 m depth at Cherry Creek, and it can also be
made out by eye despite the noise at 0.51 m depth in Cherry Creek
(Fig. 4B). In both cases, the deeper time series has smaller ampli-
tude and is shifted forward in time relative to the shallower time
series, as we would expect from the models of Hatch et al.
(2006) and Keery et al. (2007). In both raw data sets, the time ser-
ies exhibit non-sinusoidal features such as noise, asymmetry, and
changes in trend from day-to-day (i.e., the daily mean temperature
changes from one day to the next). The DTS data particularly ap-
pear to contain significant high-frequency noise, due to the rela-
tively low precision (±0.2 �C) of the DTS system used in this
specific configuration. Both datasets have enough noise, natural
or sensor-derived, to occasionally create local maxima and minima
that do not correspond to the daily maximum and minimum tem-
peratures. In both stream systems, temperature rises faster in the
morning and falls more slowly in the evening, leading to asymmet-
ric or saw-toothed patterns. This periodic asymmetry gives signif-
icant amplitude to the first few harmonics of the fundamental
diurnal signal, which will be seen during the DHR analysis below.
In both data sets there are also variations in the temperature trend
(which can be thought of as a moving average daily temperature),
which are caused by changing weather patterns and differing
amounts of solar radiation. All of these deviations from an ideal
sinusoid are common in natural temperature time series and can
cause error in flux calculations (Lautz, 2010).

Both Hatch et al. (2006) and Keery et al. (2007) note that the
amplitude ratio method and the phase lag method differ in their
sensitivity to flux depending on sensor spacing, signal frequency,
and flux rate, with the amplitude ratio being more sensitive at low-
er rates on the order of 1 � 10�5 m s�1 (Hatch et al., 2006), which
are more typical of general stream values found in the literature
(e.g. Fanelli and Lautz, 2008; Hatch et al., 2006; Keery et al.,
2007; Lautz et al., 2010). Furthermore, Lautz (2010) demonstrated
that the amplitude ratio method is more reliable in non-ideal con-
ditions, which likely exist at most field sites, and Hatch et al.
(2006) notes that filtering can create spurious phase shifts. Most
researchers have focused on the amplitude ratio method in their
research (e.g. Fanelli and Lautz, 2008; Keery et al., 2007; Schmidt
et al., 2011; Vogt et al., 2010), and we do the same here by concen-
trating this discussion on the amplitude ratio results.

A number of researchers have investigated potential errors in
water flux estimates using heat modeling methods, including the
effects of error in temperature measurement, thermal diffusivity,
and sensor spacing (Shanafield et al., 2011), sediment heterogene-
ity (Ferguson and Bense, 2011; Schornberg et al., 2010), and non-
vertical flow (Lautz, 2010; Rau et al., 2010). These non-ideal condi-
tions are certainly present to some degree at both field sites, par-
ticularly non-vertical flow (see Section 3.6, below), but the
potential uncertainty is not discussed in detail. However, we do
conduct a sensitivity and uncertainty analysis for errors in sedi-
ment and thermal properties, which demonstrate how VFLUX
can be a useful tool for investigating uncertainty and error in mod-
eling or field studies such as Lautz (2010) or Shanafield et al.
(2011).

3.1. Sensor synchronization

In both data sets, from Ninemile Creek and Cherry Creek, the
temperature sensors in each TP were synchronized by nature of
the experimental setup, so synchronization of the time series using
VFLUX was unnecessary. The first step performed by VFLUX was
therefore simple; the program copied the time series into a MAT-
LAB structure to be processed by the remainder of the program.
In other potential cases, however, especially those that use discrete
ertical pore-water flux from field temperature time series using the VFLUX
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Fig. 5. Examples of temperature time series data before and after being low-pass
filtered and resampled. (A) From Ninemile Creek at 0.05 m depth. (B) From Cherry
Creek at 0.097 m depth. The low-pass filter has visibly reduced the high-frequency
noise in the Cherry Creek data.
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sensors and data loggers like iButtons, the sensors may not collect
measurements in sync. In these cases, synchronization is an impor-
tant step in processing for two reasons. First, it is important that all
time series be sampled at the same rate so that the discrete-time
DHR analysis can be performed consistently on all the time series
in a TP. Different discrete sampling rates have different bandwidth
capacities, and therefore may contain different frequency spectra
(Box et al., 1994), making comparison between DHR results more
difficult. Second, DHR as implemented in the Captain Toolbox is
blind to the absolute time of each point in a time series, and calcu-
lates phase angles based on the position of the first data point in
each time series (Young et al., 2010). If the first data point is shifted
in absolute time from one time series to another, the Captain Tool-
box will not recognize this and the phase shift, Dt, in Eq. (15) will
be calculated incorrectly. Finally, it is obviously necessary that the
time series from all sensors be complete over the same time period,
so that comparisons between the signals can be made for every day
and every possible pair of sensors.

3.2. Oversampling and high-frequency noise

The resample routine is an important part of the VFLUX process
because it reduces oversampled data and removes high-frequency
noise. Oversampling reduces the effectiveness of DHR optimization
and filtering, as described above in Methods. The raw data from
Ninemile Creek was sampled every 10 min, for a sampling rate of
144 samples per day, which is much higher than the rate of
approximately 12-to-24 samples per day that is ideal for describ-
ing a perfect diurnal signal. However, oversampling in the original
data collection stage has no disadvantage as long as the data are
resampled prior to a DHR analysis, and oversampling has the
advantage of better describing the diurnal signal in relation to
high-frequency noise, which is then removed by the low-pass fil-
ter. When analyzing the Ninemile Creek time series, VFLUX chose
an integer resample factor (rfactor) of 12, so that the reduced sam-
pling rate was 12 samples per day. Fig. 5A shows an example of
data from Ninemile Creek (0.05 m depth) at its original sampling
rate and after being resampled and low-pass filtered by VFLUX. Be-
cause the original data collected at Ninemile Creek was not overly
noisy, the resampled time series appears to be very similar to the
original series in form, but simply described by fewer data points.
The time series from Cherry Creek, however, include a lot of high
frequency noise (Fig. 5B). Temperature at Cherry Creek was sam-
pled every 20 min, for a sampling rate of 72 samples per day.
The value of rfactor was therefore calculated to be 6, and the re-
duced sampling rate was again 12 samples per day. Comparing a
subset of the resampled data with the raw data in Fig. 5B shows
that the low-pass FIR filter has reduced the high-frequency noise
and smoothed the signal, in addition to lowering the sampling rate.

3.3. Non-sinusoidal raw temperature signals

Departure from an ideal sinusoidal temperature signal creates
several challenges when calculating flux rates from real-world
temperature time series using the Hatch and Keery methods, espe-
cially if relying on daily extrema to calculate amplitude attenua-
tion and time lag (e.g., Fanelli and Lautz, 2008; Hatch et al.,
2006; Lautz, 2010) or if fitting a static sine function to the raw time
series (e.g., Swanson and Cardenas, 2010). First, the analytical solu-
tions to the one-dimensional heat transport equation are based on
the assumption that the temperature oscillations at the surface and
at depth are sinusoidal waves of a single frequency (Hatch et al.,
2006; Keery et al., 2007; Stallman, 1965). However, real-world
temperature time series contain many harmonic and trend compo-
nents, as previously discussed, requiring the frequency of interest
to be isolated by filtering. Second, the presence of local maxima
Please cite this article in press as: Gordon, R.P., et al. Automated calculation of v
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and minima (such as in the second and third days of Fig. 4A) make
the detection of daily extrema more challenging with an auto-
mated peak-detection program, although this can certainly be
overcome with good programming. Third, the saw-toothed pattern
found in many natural temperature series (including those from
Ninemile and Cherry Creeks) mean that maxima and minima do
not occur 12 h apart; therefore, a different phase angle would be
inferred from the maximum time than from the minimum time.
Furthermore, the time lag (Dt) between a shallow and deep sensor
is not the same when computed with the maximum and the min-
imum of an irregular signal, because the slower temperature
change before each minimum allows the streambed to respond fas-
ter, with a shorter time lag (Lautz, 2010). Fourth, when the temper-
ature trend changes through time, estimates of the signal
amplitude (made by halving the difference between daily extrema)
can be very inaccurate, and can change dramatically from one day
to the next despite a constant flux rate. Using Fig. 4A as an exam-
ple, the temperature difference between the maximum at 3.1 days
and the following minimum is higher than twice the true diurnal
signal amplitude because the trend is decreasing quickly over that
time period. Alternately, if one were to use the difference between
the minimum at 2.9 days and the maximum at 3.1 days, the esti-
mated amplitude would be too low, for the same reason. This
example also shows that calculating the amplitude using a maxi-
mum and the following minimum can often give a different ampli-
tude estimate for the same day than using a minimum and the
following maximum. Abrupt changes in trend, such as those that
ertical pore-water flux from field temperature time series using the VFLUX
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Fig. 6. (A) The AR(12) spectrum (auto-regression spectrum of order 12) of the
0.05 m time series from Ninemile Creek, showing peaks near the fundamental
frequency (12 samples per cycle) and the first and second harmonics (6 and 4
samples per cycle). The slope of the spectrum up and left towards the zero
frequency (infinite period) is the trend component of the DHR model. The vertical
lines are indices showing the expected periods of the fundamental signal and its
harmonics (12, 6, 4, 3 and 2.4 samples per cycle). (B) The optimized DHR model for
the AR spectrum in (A) (dashed line), showing a good model fit to the data (solid
line) along the trend, fundamental, and first two harmonic peaks.

10 R.P. Gordon et al. / Journal of Hydrology xxx (2011) xxx–xxx
occur with frontal weather patterns, can entirely mask the pres-
ence of a daily maximum or minimum, making it impossible on
that day to calculate flux using extrema. When the raw time series
deviates substantially from a pure sinusoid, it may also be very dif-
ficult to fit the raw data with a static sine function (Swanson and
Cardenas, 2011), leading to substantial errors in the determination
of amplitude and phase using that method, as well (for example, a
static sinusoid fits poorly to any of the 24-h periods shown in
Fig. 4A between days 2 and 5).

These challenges illustrate how an accurate filtering mechanism
is important for accurate time series analysis, and how an objec-
tive, consistent method of extracting amplitude and phase is
needed to calculate flux rates. DHR is a robust method of filtering
that can identify harmonic components in a complex time series
with greater accuracy than a band-pass filter (Keery et al., 2007).
DHR can successfully identify the diurnal signal and separate it
from trend and harmonics even when the trend is changing
quickly, so flux can be calculated on days when it might otherwise
be impossible. DHR is also fully automated and can function objec-
tively and consistently on a wide range of datasets without the
need for human selection of extrema or other temperature patterns
(Keery et al., 2007). VFLUX has been programmed to make the
application of DHR straightforward for the user for this particular
application.

VFLUX processed the time series from each Ninemile Creek sen-
sor using the same DHR settings. An auto-regression (AR) spectrum
of data from the 0.05 m sensor is shown in Fig. 6A, showing the
peaks in power for various components of the temperature record.
A similar figure is produced by VFLUX for each time series using
the ‘arspec’ function from the Captain Toolbox and is shown to
the user during program execution. Note the strong peaks in power
at the fundamental frequency (the diurnal oscillation at a period of
12 samples per cycle) and its first two harmonics (with periods of 6
and 4 samples per cycle). Two lesser peaks can be seen in the spec-
trum near the third and fourth harmonics (3 and 2.4 samples per
cycle), but their power is very low and their identification by peri-
odicity is not clear. The half-peak in the spectrum at the zero fre-
quency (infinite period) to the left of the fundamental peak
represents the trend component in Eq. (1), or a zero-frequency
component in Eq. (2). The strong harmonic response at 2 and 3
times the fundamental frequency is due to the asymmetric but
periodic saw-tooth temperature patterns, as any periodic function
that deviates from a pure sinusoid can be decomposed into a sum
of sinusoidal harmonics at multiples of the fundamental frequency
(for details of basic Fourier theory, see, e.g., Boas, 1983). Fig. 6B
shows the fit of the DHR model (Eqs. (1) and (2)) to the time series
AR spectrum, optimized by VFLUX using the DHR optimization
function ‘dhropt’ from the Captain Toolbox. The fit of the model
to the data appears very good along the trend and the fundamental
and first harmonic peaks, and good for the second harmonic, as
well. The optimized value of the non-linear (logarithmic) least
squares objective function is 171.5. DHR has successfully differen-
tiated the fundamental diurnal frequency from its trend and asym-
metric components. The results of the DHR analysis for the
Ninemile Creek 0.05 m sensor are shown in Fig. 7. The DHR model
matches the actual data well, and has extracted the diurnal signal
even in difficult sections with local extrema and changing trend,
such as between 1 and 5 days.

The AR spectrum and the DHR model fit to data from 0.097 m
depth in Cherry Creek are shown in Fig. 8A. The trend and diurnal
signal are strong, with a weaker first harmonic and a very weak
second harmonic. The optimized DHR model fits the data well over
the trend and diurnal peak, but not as well over the two harmonics.
The non-linear least squares objective function is 166.4. A similar
figure for data from 0.51 m depth in Cherry Creek is shown in
Fig. 8B. The diurnal signal is much weaker at this depth compared
Please cite this article in press as: Gordon, R.P., et al. Automated calculation of v
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to the sensor noise, and the DHR optimization is not as effective at
modeling the trend or fundamental signal. As a result, the fitted
spectrum in Fig. 8B does not fit the actual spectrum well over
the trend or diurnal frequency peaks. The value of the objective
function, at 355.4, is more than twice the value for the fit to the
time series at 0.097 m. At all sensors below 0.51 m depth at Cherry
Creek, the mean amplitude of the diurnal signal is less than 0.2 �C,
the precision of the DTS equipment. As a result, the diurnal signal
cannot be easily filtered from the noise. We suggest in general that
signal components with amplitudes below the sensor precision
should be used with caution. The filtered components from
0.51 m depth are shown in Fig. 9.
3.4. Sample-by-sample flux calculation

After filtering the temperature time series with DHR, it would
certainly be possible to identify daily maxima and minima and
thereby calculate daily amplitudes and phase angles; however, an-
other significant advantage of using DHR is that it allows VFLUX to
calculate amplitude and phase at each sub-daily time step in the
resampled data (by Eqs. (3) and (4)), rather than estimating them
daily. There are several benefits to calculating flux at the sub-daily
time scale.
ertical pore-water flux from field temperature time series using the VFLUX
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We have already discussed how DHR avoids the subjective
human identification of extrema, but sample-by-sample calcula-
tions also have the benefit of being a more precise-in-time esti-
mate of the character of a time series. Note how in Figs. 7 and 9,
Please cite this article in press as: Gordon, R.P., et al. Automated calculation of v
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the amplitude of the filtered diurnal signal changes with time.
We know from the DHR model (Eqs. (1) and (2)) that the amplitude
of a single-frequency component is time-varying. When an esti-
mate of amplitude is calculated as half of the difference between
a daily maximum and minimum, the amplitude is effectively aver-
aged over the time period between the extrema; however, with
DHR, the amplitude and phase of each frequency component is
determined at each sample, which represents a period of time only
as long as the sampling period (2-to-4 h in VFLUX). By employing
DHR, VFLUX can calculate flux rates between a sensor pair from
the amplitude attenuation and time lag at any sample in the time
series, and it thereby avoids relying heavily on the time and tem-
perature of only two measurements per day, i.e., the daily extrema.
The high temporal resolution of sample-by-sample flux calcula-
tions is most useful during days with unusual weather patterns,
when it may provide flux results for fractions of the day, while
the daily extrema method may fail to give any flux measurement
at all.

Sub-daily flux calculations might be needed in systems where
flux rates change quickly, such as in tidal estuaries, dam-controlled
reservoirs or rivers, or in flashy streams during discrete precipita-
tion events. However, it should be noted that, to our knowledge, no
research has been performed on the applicability of the Hatch or
Keery analytical methods to systems where flux rates change sig-
nificantly at sub-daily scales. Keery et al. (2007) did note that the
Stallman equation is based on the assumption that flux does not
change at scales shorter than the diurnal period, and ‘‘it is therefore
neither necessary nor appropriate to calculate vertical flux for
every time step.’’ However, VFLUX would be an ideal tool in any
field or modeling investigation of the Hatch or Keery method in dy-
namic-flux environments.

One clear value of making many independent estimates of a dai-
ly flux rate is that the mean or median of such estimates, which
have inherent noise, may best estimate the value in question. We
recommend that estimates of physical vertical water flux at a field
site be made by finding the central tendency of several days of flux
calculations (as in Lautz, 2010). Shown in Fig. 10 are the amplitude
and phase angle of a pair of sensors from Ninemile Creek through
time, and the flux rates that were calculated by VFLUX at each time
step. The slight differences between flux calculated with the Keery
and Hatch methods in Fig. 10C are due to the differing treatment of
ertical pore-water flux from field temperature time series using the VFLUX
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Fig. 9. Results of DHR filtering of the 0.51 m time series from Cherry Creek. The fundamental component and its amplitude are identified, but the model fit to the raw data is
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thermal dispersion by the two models (see the discussion in Keery
et al., 2007).

3.5. Sensor pair identification and ideal sensor spacing

The Hatch and Keery methods both require concurrent informa-
tion from two vertically-spaced temperature sensors to make a sin-
gle determination of vertical water flux. Choosing the best spacing
between the sensors (Dz) requires balancing several consider-
ations. The flux calculated for a single sensor pair is an estimate
of the volume of water per area moving vertically over the distance
Dz, or the average vertical flux over Dz. VFLUX assigns the flux esti-
mate to a point equidistant between the sensors, referred to as the
center-of-pair depth; however, as Dz increases, so does the averag-
ing distance represented by that single point. A long averaging dis-
tance might not be appropriate if the vertical component of flux
changes along the distance Dz. If the purpose of an experiment is
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to observe changes in vertical flux with depth, or if it is critical that
a flux estimate represent a certain depth with precision, then the
goal should be to have the smallest sensor spacing (window)
possible.

On the other hand, the amplitude attenuation and time lag be-
tween two sensors must be large enough to be resolved by the res-
olution and response time of the sensors (Hatch et al., 2006). If the
sensors are too close together, then the amplitude ratio can effec-
tively approach one (or even surpass one due to measurement er-
ror), and the time lag can likewise approach zero. If the sensors are
too far apart, then the tracer signal may be damped out below the
sensor resolution at the lower depth, and the amplitude ratio can
be effectively zero. If sensor spacing is two large, vertical resolution
is also lost. Furthermore, the analytical heat transport models are
most sensitive within defined ranges of Ar and Dt that vary
depending on the magnitude and direction of flux and the thermal
properties of the streambed sediment (Hatch et al., 2006; Keery
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inemile Creek at 0.15 and 0.25 m depth. (B) A plot of the phase angle of the diurnal
ude methods for the pair of sensors in (A) at a center-of-pair depth of 0.20 m.
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et al., 2007). For example, the Hatch amplitude method loses sen-
sitivity as Ar approaches one or zero, near which small changes in
the amplitude ratio can lead to large changes in the calculated flux
due to a very low dAr/dq. Selection of the best arrangement of sen-
sors in a TP is therefore a particular problem, because the flux rates
may not be known prior to equipment installation, or the flux rates
may change with time or depth. Therefore, for the most flexible
analysis Hatch et al. (2006) recommend the deployment of many
sensors, so as to have the greatest number of pairs with the widest
range of Dz values possible. However, the large number of poten-
tial pairs (1596 in the case of Cherry Creek) leads to a very large
number of calculations.

As described in Methods, VFLUX has several features that allow
the user to determine an ideal sensor spacing range. For any time
step where the amplitude ratio is 1 or 0 (the sensor spacing is
too small or two large), the program will not calculate either of
the amplitude methods, and a null value is written. Likewise, for
any time step where the time lag is 0 or negative, the program will
not calculate either of the phase methods, and a null value is writ-
ten. The application of the Hatch amplitude method in the VFLUX
code also includes an optional sensitivity check, which will write a
null flux value if the derivative dAr/dq is below a certain value
(0.001 d m�1, by default), which indicates very poor sensitivity of
the model due to non-ideal sensor spacing. The selection of an
ideal window size for a specific application therefore involves
achieving a sufficient percentage of non-null flux values while still
maintaining a small-enough window to supply sufficient vertical
resolution in space.

VFLUX displays bar charts of the percent of non-null flux calcu-
lations for different sensor pairs and sensor spacings (Fig. 11). For
each window size, a separate bar chart shows the percent of suc-
cessful calculations made at each center-of-pair depth, and the
number of bars and their spacing indicates the resolution in the
vertical dimension (i.e., spatial resolution is higher with smaller
window sizes and a greater number of closely spaced depths). In
relatively high-flux environments, such as the examples from
Cherry and Ninemile Creeks, the ideal sensor spacing is larger than
for low-flux environments; therefore, at small windows sizes, a
large number of flux calculations are outside the model sensitivity
range. However, because vertical flux changes with depth at both
sites, we want high spatial resolution to resolve these changes,
and larger window sizes may obscure or blur transitions in flux
with depth.

At Ninemile Creek, amplitude ratios were generally high (rang-
ing from 0.716 to 1.01 for all pairs and time steps), indicating that
water flux was strong and in the downward direction. Because
there are only 21 possible pairs in a TP of seven sensors, every pos-
sible window was used in VFLUX, i.e., 1, 2, 3, 4, 5, and 6 sensor
spacings, which correspond to Dz values of 0.05, 0.10, 0.15, 0.20,
0.25 and 0.30 m. At a Dz of 0.05 m, 17% of time steps had an
Ar P 1 and the mean Ar was 0.965; at a Dz of 0.10 m, 9% of time
steps had a Ar P 1 and the mean Ar was 0.944; by a Dz of 0.20 m,
there were no time steps at which flux could not be calculated
and the mean Ar was 0.903. The bar charts in Fig. 11 break down
these statistics for each window by depth. With a window of 1 sen-
sor spacing (Dz of 0.05 m), Fig. 11 shows that fewer than 35% of the
flux calculations were within the model sensitivity range at the
shallowest center-of-pair depth (0.025 m), where vertical flux
was highest. A substantial percentage of calculations were also null
at 0.075 m depth. With a window of 2 (Dz of 0.10 m), the shallow-
est depth of 0.05 m has an approximately 60% success rate, and
with a window of 3 (Dz of 0.15 m), the shallowest depth is now
up to 90%. We made the subjective decision that a Dz of 0.10 m
best balanced spatial resolution and model sensitivity, because
more than half of flux values were calculated within the model
sensitivity range at even the shallowest depth (with the highest
Please cite this article in press as: Gordon, R.P., et al. Automated calculation of v
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vertical flux rate), and five different center-of-pair depths gave en-
ough vertical resolution to describe changing flux patterns with
depth.

As stated in Methods, the Cherry Creek DTS data were processed
with windows of 8, 9, 10, 11, and 12 sensor spacings, which corre-
spond to Dz values of 0.110, 0.124, 0.138, 0.152, and 0.166 m.
These spacings were chosen because the amplitude ratios observed
for this rod were generally high and lag times were short, meaning
that the water flux at the TP location was strongly downwelling,
and large sensor spacings were required to detect a change in
amplitude. The pairs separated by the smaller Dz values of 0.110
and 0.124 m had many time steps at which flux could not be com-
puted because the amplitude ratio was close to or greater than one.
The values above one are due to slight errors in measurement or
digital filtering. At Dz of 0.110 m, 21% of time steps for pairs with
a center-of-pair depth less than 0.20 m had an Ar P 1, and the
mean Ar among these time steps was 0.963; at a Dz of 0.138 m,
18% of time steps had an Ar P 1 and the mean Ar was 0.954; and
at a Dz of 0.166 m, only 12% of time steps shallower than 0.20 m
had an Ar P 1 and the mean Ar was 0.943. We made the subjective
decision that a Dz of 0.138 m gave the best balance between verti-
cal spatial resolution and model sensitivity for the entire TP,
although it would also be possible to use a combination of multiple
Dz values at different times and/or depths to maximize the sensi-
tivity of the results in both space and flux rate (see Briggs et al.,
accepted for publication).

These examples show how the deployment of many sensors in a
TP, coupled with the computing flexibility of a program like VFLUX,
can help identify the best sensor spacing for a particular experi-
ment and field site. In the cases of Cherry Creek and Ninemile
Creek, high amplitude ratios due to high downward flux rates
made the choice of sensor spacing even more important.

3.6. Flux results and a comparison of methods

The results of flux calculations at Ninemile and Cherry Creeks
show that vertical flux rates at both sites are indeed strongly
downwelling (approximately 5 � 10�5 m s�1 and 2 � 10�5 m s�1,
respectively, at the shallowest depths). A box plot of 2-h flux esti-
mates over the entire collection period (excluding the first and last
48 h) versus the center-of-pair depth from Ninemile Creek is
shown in Fig. 12A. A similar plot from Cherry Creek is shown in
Fig. 12B. These two figures only include flux estimates calculated
with the Hatch amplitude ratio method (Eq. (6)). As can be seen
in the box plots, the distribution of flux estimates for each sensor
pair is not normally distributed but has a positive skew with large
positive outliers. The outliers are a result of decreasing sensitivity
of the amplitude ratio model as the amplitude ratios become very
close to 1, and could have been removed by employing the Hatch
amplitude method derivative check (see the discussion above). In
Fig. 12, we have chosen to keep all outliers in order to illustrate
the range of potential results, and we therefore use the median
to represent the central tendency of a population of flux estimates.

At both sites, the vertical flux rates at the shallowest depths are
the largest (Fig. 12), with a median rate over time of 5.1 � 10�5

(+1.4 � 10�5 or �7.2 � 10�6 m s�1) at 0.025 m depth at Ninemile
Creek and 1.7 � 10�5 (+5.5 � 10�6 or �1.9 � 10�6 m s�1) at
0.097 m depth at Cherry Creek (the plus-or-minus errors span
the interquartile range). As the depth increases away from the
streambed interface, the flux rate decreases towards zero. We
interpret these spatial patterns to be due to relatively shallow,
curved hyporheic flow paths that are not purely vertical but have
a horizontal component that increases with increasing depth (also
see Briggs et al., accepted for publication). The profile at Ninemile
Creek was installed at the head of a riffle in a pool-riffle sequence,
where we would expect the initiation of a shallow, curved
ertical pore-water flux from field temperature time series using the VFLUX
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Fig. 11. An example of the sensor spacing diagnostic charts produced by the visualization routine of VFLUX. This set of charts was produced using the Hatch amplitude
method results from the Ninemile Creek data. Each bar chart for a specific window size (sensor spacing) shows the percent of flux values through time that were within the
sensitivity range of the model at each center-of-pair depth.
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hyporheic flow cell. The profile at Cherry Creek was installed just
upstream of a beaver dam, which creates a step in hydraulic heat
and likely initiates similar shallow hyporheic flow that becomes
horizontal with depth. The flux rates near the streambed interface
are therefore likely to be the best estimate of exchange between
the hyporheic zone and the stream itself. Compared to previous
methods in which the sensor spacing increased with increasing
depth (Vogt et al., 2010), the use of a sliding window in the VFLUX
method makes it possible to identify with greater precision
changes in flux with depth, because it is easy to use the smallest
sensor spacing—with the greatest spatial precision—that is still
sensitive to the heat-transport model in use (Briggs et al.,
accepted for publication).

Fig. 13 shows calculated vertical flux rates through time for a
single pair of sensors at 0.15 and 0.25 m depth (center-of pair
depth is 0.20 m) at Ninemile Creek, calculated with the Hatch
amplitude method. Also plotted are two sets of flux rates that were
calculated on a daily basis by selecting the maximum and mini-
mum temperature in each 24-h period (similar to the methods of
Fanelli and Lautz, 2008; Hatch et al., 2006; Lautz, 2010). The daily
flux calculations were made on both the raw, unfiltered time series
and on the diurnal signal after filtering it with DHR. Although the
true flux values in the field are not known independently from
our heat transport estimates, it is still useful to compare the esti-
mates made from both the sample-by-sample and daily methods
using both filtered and unfiltered thermal data, since all of these
techniques have been used in the published literature (e.g. Fanelli
and Lautz, 2008; Hatch et al., 2006; Keery et al., 2007). The daily
flux calculations for the filtered time series agree fairly well with
the results from VFLUX, except in the last 5 days, where they are
slightly lower than the flux rates from VFLUX. The median flux
Please cite this article in press as: Gordon, R.P., et al. Automated calculation of v
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value over the whole collection period is not significantly different
between the two methods (Mann–Whitney rank test, p = 0.718).
However, the daily flux calculations made with the unfiltered time
series do not agree well with the results from VFLUX in Fig. 13. The
unfiltered flux estimates are more variable in time than both of the
filtered flux estimates, and the median flux value is significantly
different between the two methods at the 5-percent significance
level (p = 0.029).

3.7. Sensitivity and uncertainty analysis for thermal properties

We employed the VFLUX programs ‘‘vfluxsens’’ and ‘‘vfluxmc’’
to conduct basic sensitivity analyses on sediment and thermal
properties and to estimate confidence intervals for flux estimates
through time for the data from Ninemile Creek. The results of the
sensitivity analysis for a Dz of 0.1 m at a center-of-pair depth of
0.2 m are presented in Table 2. At this magnitude of downward flux
(1.03 � 10�5 m s�1 calculated with the base parameters) estimated
flux values are most sensitive to thermal conductivity, closely fol-
lowed by porosity, which determines the total heat capacity of the
saturated matrix. Flux is least sensitive to the heat capacity of sed-
iment and water, because these values vary little in nature (Lap-
ham, 1989). Although only results from one pair of sensors are
presented, these general patterns hold true for all of the flux results
from Ninemile Creek. As the magnitude of downward flux
increases, flux becomes more sensitive to porosity and thermal
conductivity. A similar sensitivity analysis was performed for Cher-
ry Creek (not shown), where flux magnitudes were smaller than at
Ninemile. At flux rates above approximately 5 � 10�6 m s�1, the
Cherry Creek analysis shows a similar pattern to the Ninemile anal-
ysis, with increasing model sensitivity to porosity and thermal
ertical pore-water flux from field temperature time series using the VFLUX
1.053

http://dx.doi.org/10.1016/j.jhydrol.2011.11.053


0 0.2 0.4 0.6 0.8 1 1.2
x 10−4

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

ce
nt

er
−o

f−
pa

ir 
de

pt
h 

(m
)

downward vertical flux rate (m s−1)

A

−1 0 1 2 3 4 5 6 7 8
x 10−5

0.138

0.207

0.276

0.345

0.414

0.483

ce
nt

er
−o

f−
pa

ir 
de

pt
h 

(m
)

downward vertical flux rate (m s−1)

B
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Table 2
Results of the sensitivity analysis for Ninemile Creek data (Dz of 0.1 m, center-of-pair
depth of 0.2 m).

Property varied Median flux value through time (m s�1)

With low parameter
value

With high parameter
value

(None, using base values from
Table 1)

1.03 � 10�5

Total porosity 1.01 � 10�5 1.11 � 10�5

Baseline thermal conductivity 0.86 � 10�5 1.05 � 10�5

Thermal dispersivity 1.02 � 10�5 1.07 � 10�5

Volumetric heat capacity of
sediment

1.02 � 10�5 1.04 � 10�5

Volumetric heat capacity of
water

1.034 � 10�5 1.018 � 10�5
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Fig. 14. Results from the Monte Carlo analysis of flux uncertainty for 2 sensor pairs
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conductivity with increasing downward flux. However, at flux
rates below 5 � 10�6 m s�1, the model is more sensitive to thermal
conductivity with decreasing flux rates, suggesting that model sen-
sitivity to conductivity is at a minimum near 5 � 10�6 m s�1 (for
the specific conditions at Cherry Creek). At Ninemile Creek, flux
magnitudes were not small enough to observe this effect.

One question that arises when comparing different flux esti-
mates from one site to another, or even from one depth to another,
is whether differences in flux estimates are due to truly different
magnitudes of water flux, or simply to different sediment thermal
properties. For example, in order to say with greater certainty that
vertical flux does indeed decrease with depth at Ninemile Creek
(Fig. 12A), we can test whether the apparent differences in flux
could be due to changes in sediment texture alone. Select results
from the Monte Carlo analysis of data from Ninemile Creek are
shown in Fig. 14. Flux estimates are plotted through time for two
sensor pairs with center-of-pair depths at 0.15 and 0.20 m (Dz of
0.10 m), with upper and lower uncertainty limits (±2 standard
Please cite this article in press as: Gordon, R.P., et al. Automated calculation of v
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deviations). The plot shows that uncertainty is greater at greater
downward flux rates (at the shallower depth), but there is no over-
lap between the confidence intervals from the two depths. Results
therefore suggest that the different flux rates measured at 0.15 and
0.20 m are statistically different. Error or uncertainty analyses such
as the one presented here are an important component of physical
ertical pore-water flux from field temperature time series using the VFLUX
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flux estimation, and confidence intervals should generally be given
along with reported flux values. The VFLUX software package and
the Monte Carlo analysis program demonstrated here make the
calculation of confidence intervals automatic and straightforward.
4. Conclusion

Time series of streambed temperatures have been successfully
used by many researchers to estimate vertical water flux rates in
shallow streambeds (e.g. Fanelli and Lautz, 2008; Hatch et al.,
2006; Keery et al., 2007; Vogt et al., 2010), and these studies have
each made advances in heat-transport modeling, signal processing,
and experimental deployment. We have introduced a step-by-step
workflow for analyzing temperature time series and calculating
vertical water flux, which incorporates the advancements made
in previous work and adds automation and new techniques for
processing large amounts of data from high-resolution sensor pro-
files. The method has been written into a computer program called
VFLUX, which automates the entire process of calculating vertical
flux rates from raw temperature time series. VFLUX is the first pub-
lished computer program for calculating water flux from tempera-
ture time series to completely automate data pre-processing,
including robust filtering with Dynamic Harmonic Regression
(DHR), and the first method to use a sliding window to identify
changing flux rates with depth at high spatial resolution. VFLUX
also includes functions for data and result visualization, new tools
for evaluating model sensitivity and ideal sensor spacing, and func-
tions for sensitivity analysis and confidence interval calculation.

We have shown using two field examples that each step of the
method is important for calculating accurate flux rates from real-
world temperature data, which are typically characterized by sev-
eral irregular signals that vary in time with different amounts of
noise. The automated method processes time series consistently
for every sensor in a profile, and it can calculate flux between every
possible sensor pair separated by every possible sensor spacing,
which is particularly useful when the ideal sensor spacing for a
specific field site is unknown. An automated program such as
VFLUX is of great assistance when deploying a large number of sen-
sors, as in a high-resolution DTS profile, due to the very large num-
ber of potential calculations. We have shown how VFLUX can help
the practitioner quantitatively evaluate the ideal spacing between
sensor pairs, and how the program can be used in situations where
many repeated calculations are desired, such as studies of model
sensitivity to thermal parameters and Monte Carlo error
estimation.

We have also shown how this method, which provides high
spatial and temporal resolution, is both more accurate and reliable
than previous methods at capturing changing flux rates through
time and changing vertical flux with depth. Our analysis of field
data from Ninemile Creek, NY, and Cherry Creek, WY demonstrate
how the VFLUX method can be used in situations where shallow
hyporheic flow paths change direction from vertical near the sur-
face to horizontal with depth, such as in shallow, curved hyporheic
flow paths. For example, high-resolution DTS data from Cherry
Creek processed with this method show vertical flux decreasing
from approximately 1.7 � 10�5 m s�1 very near the sediment–
water interface to near zero by approximately 0.5 m depth. A
Monte Carlo uncertainty analysis at Ninemile Creek shows that
the observed decrease in flux with depth cannot be due to chang-
ing sediment thermal properties alone. Unlike other methods used
in the literature, VFLUX also supplies flux results at high temporal
resolution, and therefore could also be used to investigate flux
rates that change on hourly time scales in estuary environments
or dam-controlled water bodies. We believe that the release of this
method and the availability of the VFLUX program will make heat
Please cite this article in press as: Gordon, R.P., et al. Automated calculation of v
method and computer program. J. Hydrol. (2011), doi:10.1016/j.jhydrol.2011.1
transport modeling a more approachable and widely-used tech-
nique for calculating vertical water flux rates using temperature.
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