Data analysis and Geostatistics - lecture IX

The wonderful art of regression analysis

Multi-variate techniques

Have now finished data description and statistical testing
will now move to more advanced (multi-variate) techniques:

Regression analysis; quantitative description of trends in data - allows for
interpolation and extrapolation beyond the input data

Discriminant function analysis; a means to differentiate groups in a data

set - used to differentiate and classify

Principal component and factor analysis; determine directions in a data
set to reduce the number of variables and/or look for processes in the data

Cluster analysis; group data into homogenous clusters - used to differen-
tiate and to split up multi-modal data sets for use in other stat techniques

Spatial geostatistics; techniques for mining spatially distributed data

Regression pitfalls

Regression is probably the most common statistical analysis performed on data, but
few people fully understand the method
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Regression pitfalls

regression slope

----- 95% confidence
limits on slope

Regression is probably the most common statistical analysis performed on data, but
few people fully understand the method
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Regression pitfalls

Regression is probably the most common statistical analysis performed on data, but
few people fully understand the method
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Regression analysis

120

The conc. of a heavy metal in soils from all over Europe:

determine the natural background so you can set pollution criteria
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however;

nice continuous distribution of the data;
can describe it with a mean/median and

spread is large in the data, but there are

mean = 92
stdev = 30
med = 93
n =700 stdev/IQR
conclusion;
no clear signs of pollution
T gnsotp

20 42 64 86 108 130 152 174

jump out in the total data set?

some samples were from heavily polluted sites, so why don’t they

unlikely to be one background value: will depend on soil type, composition etc

Regression analysis

The content of a heavy metal in soils from all over Europe:

organic matter content completely controls the conc of this heavy metal:

any soil with high organic matter content
s will have a natural enrichment

pollution will be an enrichment beyond
Aa s that caused by organic matter

ppm Cu in soil
>
s

a4 but how can we correct for the organic
matter contribution ?

% organic matter

need to quantify the relation between organic matter and heavy metal content

allows organic matter influence to be subtracted from the bulk composition
so soils can be directly compared

to quantify this relation: use regression analysis

Cu

Regression analysis- linear model

conduct a regression analysis on this data set:
Identify the dependent and the independent variable
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Regression analysis- linear model

conduct a regression analysis on this data set:

Y=b,+ b,X;

where estimated value of Y at Xi

Y=
b,= the intercept (Cu when no organics)
b, = the slope of the data array

ppm Cu in soil

% organic matter X (% organic matter) is the independent variable,

whereas Y (Cu content) is the dependent variable
as it is a function of X

this regression equation is an estimate of the population equivalent:

Yi=Bo+B1 X +&i

where €i is an uncertainty term related to the variance in the data

Regression analysis - assumptions

assumptions (or requirements) for linear regression analysis:

€ - has to be normally distributed with a mean of 0 and variance o¢?

equal distribution of points on either side of the regression curve as well as along
the curve (throughout the data range)

i.e. the deviation from a perfect fit and should therefore be centred on your fit

for every value of X, the corresponding values of Y are normally distributed

if this is not the case: have to switch to a robust regression technique
e.g. saturation level regression

Py for every X has to lie on a linear trend with o¢2 variance around this
trend (when fitting a linear trend)

i.e. the py values should correctly describe the trend that you are modeling

Regression analysis - assumptions

assumptions (or requirements) for linear regression analysis:

My for every X has to lie on a linear trend with o¢2 variance around this
trend (when fitting a linear trend)

i.e. the pv values should correctly describe the trend that you are modeling

Regression analysis - testing of the assumptions

assumptions (or requirements) for linear regression analysis that
need to be tested:

1. that the regression coefficients and the intercept are meaningful
(if not, the non-significant ones need to be removed from the
regression model)

2. that the overall model is significant (using an ANOVA analysis,
R2 is not sufficient)

3. that the assumptions are met (residual distribution)

4. that the model is not overly dependent on a single datapoint or
variable; i.e. an outlier (Variance Inflation Factor)




Regression analysis - ANOVA

Let’s have a look at the data uncertainties in regression analysis

original data have associated uncertainty:
ox2 and 0,2, however 0,2 is not independent:

0)/2 = 812 o'x2 + 0'52

where the first part describes the uncertainty explained by the
regression and the second part the uncertainty that is not

The total deviation from the mean (i.e. the sum of squares) is of course
preserved, so;

SSTOT = SSx + SSy = SSB1x+ﬁo + SS(-: = SSQ + SSs

where the latter two represent the deviation along the regression
curve and the deviation around the regression fit respectively

Regression analysis - ANOVA

We can use the sums of squares to determine goodness-of-fit;

When SSj>>SS: you have a good regression fit as most of the
variance resides in the regression and there is only minimal variance
remaining around this curve

When SSj <SSt you have a poor regression fit as the deviation from
your fit is equal or even larger than that along your fit

n

SS; = Z ( - 7)2 the deviation between the predicted
and the mean of Y = SSgegression

<6

i=1

A 2 - .
SS. = Z (Y B Y) the deviation between the predicted
! ! and real value of Y = SSpeviation

Regression analysis - ANOVA

The ratio between SSg and SSror is an indicator for the
goodness-of-fit; the coefficient of determination R2

SSr
R2 =
SSrot

R2 = 1: perfect regression fit as regression describes the full
variance in the data (SSr = SSror)

R2 = 0: no fit as the regression part of the variance is negligible
(SSr << SSvom)

Note: R = r
both relate the variance along a trend to the total variance in your data, but they are based on
different assumption and have different requirements on the input data !

Regression analysis - ANOVA

Distribution of variance in regression analysis

var source sum of squares d.f. variance
regression SSr 1 MSr
deviation SSp n-2 MSp
total SSror n-1

MS = mean square

what are the d.f. for each contribution?

deviation: need 1 and Bo coefficients to determine the predicted
value of Y, which you need for SSp, so the d.f. =n -2

regression: only 1 degree of freedom as the slope fixes the relation
between the variables; can only shift curve up or down

total d.f.: essentially the deviation in Y; from the mean of Y, so n - 1




Regression analysis - ANOVA

var source sum of squares d.f. variance
regression SSr 1 MSr
deviation SSp n-2 MSp
total SSror n-1

MS = mean square

variance = sum of squares divided by the degrees of freedom:
$20 =MSp =SSp/ n-2 and s2r = MSr = SSr/ 1

This can be used to determine whether the regression fit is significant
following our earlier ANOVA approach:

MSRr has to be significantly larger than MSp at alpha:
F-test on the ratio of MSg and MSp  (Ho; MSRr = MSp)

Regression analysis

What if the fit is not significant ?

1. there is no correlation between the variables

plot the data in a scatter diagram and check

2. the correlation is weak and not significant due to lack of data

obtain more data or accept a larger value of alpha

3. the data are correlated, but the correlation is not linear

repeat the same exercise using a more appropriate curve:

quadratic: Y = b1X + b2X2 + bo
exponential: Y = bo EXP(b1X)

Y =1/ (b1X + bo)

multiple linear: Y = b1X1 + b2X2 + bsXs + bo

reciprocal:

Linear regression with the statistics package PAST

linear fit
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Linear regression with the statistics package PAST

linear fit - statistics

96

54 Ordinary Least Squares Regression: A-B

91

- Slope a: 0.72275 Std.errora:  0.088514
150 Intercept b: -91.552 Std. error b: 50.84
229

g:: 95% bootstrapped confidence intervals (N=1999):

2o Slope a: (0.53344, 0.89646)

922 Intercept b: (-162.44, 51.446)

773

ﬁl Correlation:

o r 0.87707

203 re; 0.76925

- t 8.1654

123 p (uncorr.): 8.4854E-08

128 Permutation p: 0.0001

501




Linear regression with the statistics package PAST

data linear fit: are the coefficients significant ?

A B

100 96

143 54 Ordinary Least Squares Regression: A-B

169 91

286 139 .

448 P Slope a: 0.72275 Std. errora:  0.088514
611 150 Intercept b: -91.552 Std. error b: 50.84
659 229

ggs zsg 95% bootstrapped confidence intervals (N=1999):

o e Slope a: (0.53344, 0.89646)

1011
910
947
941
803
707
691
510
377
191
68
867

922 Intercept b: (-162.44, 51.446)

ot

= Ho; a=0,b=0 tadf = (a- 0)/stdev

20 Ha; a#0,b20 toaf =(b-0)/stdev

187

- t (slope) caic = 8.16 > taur=2.08 -> reject Ho

o t (intercept) cac = -1.59 < tqar=-2.08 ->accept Ho

Linear regression with the statistics package PAST

data linear fit: is it significant ?

A B Regress. Residual

100 % -19.278 115.28 A~

W s ns o SSp = Z (7 - Y) = SShesidual

169 91 30.592 60.408 1 t

286 139 115.15 23.847 i=1

446 171 230.79 -59.792

611 150 350.05 -200.05 A —

659 229 38474 -155.74 SSgr = Z (Y Y) mean Y = 340
782 389 47363 -84.635 i

920 586 573.37 12.627 i=1

1000 762 631.19 130.81

1011 922 639.14 282.86 SSgr
910 773 566.15 206.85 _

947 661 592.89 68.112 SSror = SSr + SSp R2 =

941 544 588.55 -44.551 SSTOT
803 458 488.81 -30.812

707 203 419.43 -126.43

691 166 407.86 -241.86

510 187 277.05 -90.048 SSp 345975

377 123 180.92 -57.923

191 128 46.492 81.508 SSr 1153347 R2=0.77

68 59 -42.406 101.41 SStor 1499321

867 501 535.07 -34.068

Linear regression with the statistics package PAST

var source sum of squares d.f. variance
regression SSr = 1153347 1 s2gr = 1153347
deviation SSp = 345975 n-2=20 s2p = 17299
total SSror = 1499321 n-1=21

s2p=SSp/n-2 and s2gr=SSgr/1

For the regression model to be meaningful, sr has to be significantly larger

than s?p at your chosen confidence level:
F-test on the ratio of s2r and s2p  (Ho; s2r = s2p)

Fcalc = 66.67 > Fo.05,1,20 = 4.35 The model is meaningful

Linear regression with PAST
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F-ratio is sufficiently high that we can reject the Ho hypothesis:

the regression fit explains a significant part of the total variance and is
therefore meaningful
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Appropriate fit for this dataset

Even though the linear regression fit is significant, it is not
necessarily the most appropriate fit for the data

Cubic regression with PAST

linear fit 3rd polynomial fit
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Polynomial regression, order 3 . °
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chi2: 77520 1204
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Equation: 2.111E-06x3-0.002104x2+0.8033x+15.43

F-ratio is higher than before: a more significant model for the data.

A
A Chance of obtaining this result purely by chance: 1 / 100000000000
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Multiple linear regression with PAST

can derive the phase fractions by multiple linear regression

element |clay quartz_ |plag |micas  |organic [C7 |soil |weight |
1 |Cu 25 0.2 5 120 2500 900 0.02
2 |Pb 16 0.1 126 260 1200 470 0.04
3 Ni 8 0.1 8 14 890 300 0.01
4 [Co 2 0.2 1 4 B51 200 0.06
5 |Zn 40 1 23 64 2200 800 0.08
6 |Zr 8 4 16 4 56 25 0.04
7 T 120 8 g 120 80 90 0.02
8 Rb B0 0.1 12 250 2 B0 0.01
9 |Sr 12 0 451 26 4 34 0.09
10 |Ba 4 0 26 154 36 38 0.06
1 U 12 2 g 19 58 28 0.05
12 |Th 5 0.5 1 7 56 20 0.01
13 |Sc 264 0 5 45 17 106 0.05
14 |V 4 0.2 2 26 298 110 0.04
15 |Cr 8 0. 3] 56 300 120 0.07

independents dependent

Multiple linear regression with PAST

can derive the phase fractions by multiple linear regression

Pearson correlation coefficient matrix

soil clay quartz plag micas organics
soil -0.07093 -0.1874 -0.10406 0.22475 0.9935
clay -0.07093 0.19781 -0.1328 0.09296 -0.16353
quartz -0.1874 0.19781 -0.16519 -0.047386  -0.20439
plag -0.10406 -0.1328 -0.16519 0.011717 -0.11858
micas 0.22475 0.09296 -0.047386  0.011717 0.16225
organics 0.9935 -0.16353 -0.20439 -0.11858 0.16225

potential problem: organics strongly dominant control on soil composition

Multiple linear regression with PAST

can derive the phase fractions by multiple linear regression

SOB Numbers |

Coeff.
Constant -7.0992
clay 0.37006
quartz 0.91549
plag 0.067332
micas 0.17703
organics 0.3499
regression
coefficients

The regression model:

Std.err. t p RA2

4.7446 -1.4963 0.1688

0.040004 9.2507 6.8155E-06  0.0050311

1.2806 0.71487 0.49282 0.035118

0.023663 2.8455 0.01923 0.010829

0.031772 5.5718 0.00034656 0.050512

0.0034672  100.92 4,6722E-15 0.98703

t-test contribution

on coeff. to R2

probability that
coefficient is 0

Multiple linear regression with PAST

can derive the phase fractions by multiple linear regression

The regression model:

Dependent variable:
N:

Multiple R:

Multiple R2:

Multiple R2 adj.:

ANOVA
F:
df1, df2:
p:

soil

15
0.99961
0.99921

0.99877

very high
2278.7 rlglcamg
59

1.1272E-13




Multiple linear regression with NCSS

Regression Coefficient Section

Independent Regression Standard Lower Upper Standardized
Variable Coefficient Error 95% C.L. 95% C.L. Coefficient
Intercept -7.9852 55681 -205812 46108 0.0000
clay 03746 00414 02810 0.4682 0.0936
micas 0.1830 00410 00902 02757 0.0464
organic 03511 00038 03425 0.3596 1.0024
plag 0.0687 00199 00237 0.1138 00377
guartz 1.3770 1.7871 -26656 54197 00081

Note: The T-Value used to calculate these confidence limits was 2.262.

Analysis of Variance Section

Sum of Mean Prob Power

Source DF R2 Squares Square  F-Ratio Level (5%)
Intercept 1 32007 96 32007 96
Model 5 09991 4999277 9998555 1958.801 0.0000 1.0000
Errar 9 00009 4593982 5.104425
TotalAdjusted) 14 10000 5003871 3574.194
Regression Equation Section

Regression Standard T-Value Reject  Power
Independent Coefficient Error to test Prob HO at  of Test
Variable (i) Sh{ij  HO:B(ijj=0 Level 5%2  ath5%
Intercept -7.9852 55681 -1.434 0.1854 No  0.2501
clay 03746 00414 9.050 0.0000 Yes 1.0000
micas 01830 00410 4461 0.0016 Yes 09767
organic 03511 0.0038 92938 0.0000 Yes 1.0000
plag 0.0687 00199 3454 0.0072 Yes 08662
guanz 13770 1.7871 0771 0.4607 Mo 0.1063

Multiple linear regression with NCSS - checks

From From 120

PRESS Regular

Parameter Residuals Residuals
Sum of Squared Residuals 1521.904 1112096 o0

Sum of |Residuals| 97.44209 68.4433
R2 09987 09994 -

Multicollinearity Section

Variance 30
Independent Inflation
Variable Factor Tolerance oo

clay 09857 09544 300 200 -10.0 00 100
micas 08743 09445 Residuals of soil

organic 08817 08768

plag 09257 08552 100 ©
quartz 09447 09193

no significant difference between

regular and PRESS R2

no significant variance inflation 200
(VIF < 5-10) and tolerance close to 1

Residuals of soil

residuals are normally distributed 00 10 20

Expected Normals

Multiple linear regression with NCSS
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Residuals of soil
Residuals of soil
Residuals of soil

00 2500 5000 7500 10000 00 750 1500 250 3000 00 750 1500 250 3000

Presicted soil clay micas

Resicals of <oilvs crgaric Residals of coilvs plag Resiclals of oilvs quartz

Residuals of soil
Residuals of soil
Residuals of soil

E!
00 6250 12500 1875.0 26000 00 1250 2500 3760 5000 00 20 40 60
orgaric plag quertz

no trends between the residuals and the (in)dependent variables

very good regression fit that satisfies all the requirements for regression

Regression summary

Regression analysis allows you to define a model for your data
that is predictive (both interpolative and extrapolative)

However, have to test that the model is meaningful by testing:

1. that the regression coefficients and the intercept are meaningful
(if not, the non-significant ones need to be removed from the
regression model)

2. that the overall model is significant (using an ANOVA analysis,
R2 is not sufficient)

3. that the assumptions are met (residual distribution)

4. that the model is not overly dependent on a single datapoint or
variable




Robust regression

Deviations from normality, such as outliers, can have a major impact on
regression coefficients and invalidate results. Unfortunately such datasets
cannot always be avoided: use robust regression
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Robust regression - Sen slope

One type of robust regression, which is especially suited to small sets of data
is the Sen slope:

The Sen slope involves calculating the slope of each combination
of two data points, and then taking the median of these slopes as
the robust characteristic slope

slope = Ax / Ay - Sen slope
for 5 data points: 10 slopes

Sen slope = median(10 slopes)

Robust regression - Sen slope

date shopping spending
5-Dec 35 900
6-Dec 98 800 LS slope: 19.6
7-Dec 45 S | - 10.1
8-Dec 52 700 ©°€N Slope: 1U.
9-Dec 67
10-Dec 2 600
11-Dec 76 2 s00-
12-Dec 83 g
13-Dec 84 & 4007 LS slope: 8.6
14-Dec 90 300
15-Dec 112 Sen slope: 9.1
16-Dec 144 200 4
17-Dec 12
18-Dec 152 1004
19-Dec 166 0
T I T
20-Dec ; gg 5 10 15 20
21-Dec
29-Dec 360 December
23-Dec 810
24-Dec 250

25




