

EPSC 552: Data analysis and Geostatistics:

Lecture XI: Eigenvector methods: PCA and FA

A few words of caution....

Eigenvector and clustering methods are extremely powerful aids in understanding your data, and the underlying processes that control the variability in your study

However;

"Principal component analysis belongs to that category of techniques, including cluster analysis, in which appropriateness is judged more by performance and utility than by theoretical considerations"

Davis. 3rd ed., 2002

And;

Eigenvector methods require there to be multidimensional correlations in the data set with meaningful causation -> if these are absent, they are not going to magically appear, and eigenvector methods are useless.

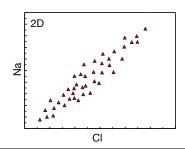
Also, if they are present in 2-D, there is no added value in multi-D -> you look for hidden directions in your data in eigenvector methods

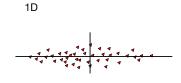
Eigenvector methods

Two main techniques: principle component and factor analysis

both techniques perform a transformation of the data to allow for easier interpretation through:

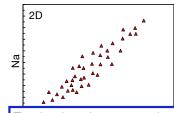
> - reduction of variables - suggestion of underlying processes

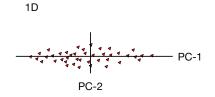




Eigenvector methods

System can be transformed to its principle components





The data have been re-cast into a new coordinate system where the axes are the principal processes operating on your data + noise

majority of the variance in this system resides in PC-1 and PC-2 can be interpreted as just the scatter/noise in the data:

dimensionality of the system reduced from 2-D to 1-D without losing any information!

Eigenvector methods - PCA and FA

General notes on Principle Component Analysis and Factor Analysis

- Principle components are the principle non-correlated directions in your data set (maximized variation along, minimized variation perpendicular to PC)
- Nowadays datasets with 50 to 100 variables are not uncommon. A reduction to a much smaller number of unrelated variables (the Factors) makes it much easier to mine such a dataset
- In PCA all variance is redistributed to new PCs, resulting in the same number of PCs as original variables.
- In FA, only those PCs that are informative are retained and the remainder is discarded as noise. The PCs can also be rotated to simplify interpretation.
- Strictly speaking PCA is a mathematical transformation of your data that retains all information, whereas FA is an interpretive model of your data.
- · In reality, most software package call both PCA

Principle component analysis - PCA

Especially useful in multi-D space

have already seen an example of this approach when looking at DFA:

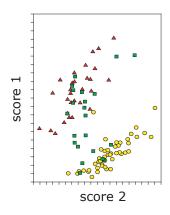
5-D replaced by 2 vectors that allow you to recognize clustering in the data:

this was not obvious in original data

However;

in this case the data are correlated in this 2-D vector space, whereas PCs are not allowed to be correlated

Principle components are the principle non-correlated directions in your data set



Principle component analysis - PCA

So what do we do in principle component analysis?

look in the data for vectors that have maximum variance along them (i.e. a strong correlation/covariance)

as all variables that display the same correlation/covariance are grouped together, the trend they describe cannot be shared with any other PC

PC-1 = vector that explains most of the variance the strongest direction in your data

PC-2 = vector that next explains most of the residual variance

PC-3 = vector that next explains most of the residual variance etc

so PC-1 explains more variance than any single original variable and therefore, PC-n explains less variance than a single variable (noise)

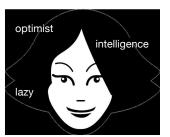
Principle component analysis - PCA

So what do these principle components look like?

$$\begin{array}{llll} PC: & PC_1 = a_{11}X_1 + a_{12}X_2 + a_{13}X_3 + a_{14}X_4 + a_{15}X_5 + & X_i = \text{original vars} \\ & PC_2 = a_{21}X_1 + a_{22}X_2 + a_{23}X_3 + a_{24}X_4 + a_{25}X_5 + & a_{ij} = \text{coefficients that} \\ & PC_3 = a_{31}X_1 + a_{32}X_2 + a_{33}X_3 + a_{34}X_4 + a_{35}X_5 + & \text{relate the original} \\ & PC_4 = a_{41}X_1 + a_{42}X_2 + a_{43}X_3 + a_{44}X_4 + a_{45}X_5 + & \text{vars to the PCs} \end{array}$$

Note that to satisfy multi-non-colinearity some of the a-coefficients have to be 0

Another way to explain PCA: psychological questionnaires



A psychologist want to know your intelligence, whether you are extroverted, a pessimist, etc.

Have to work this out from indirect questions that correlate with the variable that you are interested in (e.g. intelligence, optimism, etc)

Many questions lead to a small number of ultimate variables

matrix A tells you how to score the answers

Principle component analysis - PCA

The transformation matrix A is what you want to obtain

the matrix that translates the original variables to line up with the principle directions in the data: the PCs

so, it redistributes the variance of the original variables over the PCs, maximizing it for PC₁: Var(PC₁) = max it ensures that the PCs are uncorrelated: Cov(PC_i-PC_{i+1}) = 0

Note that we are only translating the data to a new coordination system: no info loss!

The matrix A is obtained from the covariance or the correlation matrix

when all variables are equivalent (e.g. all wt%, all ppm, etc)

when mixing variables (e.g. ppm + wt% + pH)

Principle component analysis - PCA

Link with correlation makes sense (I hope):

all variables that are correlated define one trend in the data so they should be combined in one PC, and this PC and its component variables should have an insignificant correlation with all remaining variables and PCs

e.g. 5 variables with the following correlation matrix:

	1	2	3	4	5
1	-	0.85	0.14	0.23	0.78
2	-	-	0.21	0.19	0.95
3	-	-	-	0.9	0.25
4	-	-	-	-	0.13
5	-	-	-	-	-

correlations:
1 & 3
2 & 3 2 & 4 5 & 3

so, this dat set has two PCs, with low correlation between them

Principle component analysis - PCA

Strong reduction in dimensionality: 5D to 2D

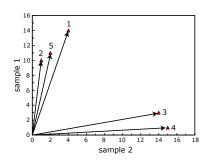
this allows for much easier data visualization and (hopefully) interpretation

it may point to two underlying processes, affecting a different set of vars

a good way to represent this is to plot it in variable space

Now you get two clusters of variables and these are your PCs

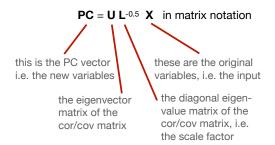
So in a way, PCA is cluster analysis on your variables



So how do we obtain the transformation matrix from cor/cov?

have to determine the eigenvectors in the correlation or covariance matrix these are the weights that relate the original variables to the PC vectors and scale these so that the variance of a PC equals 1

pure mathematical transformation



input: original vars

operator: eigenvector matrix scaled by eigenvalues

> output: PC vector

Principle component analysis - PCA

An example for thermal spring data from the Rockies:

	Si	Al	Cu	Zn	рН	Т
PC-1	0.6	-0.2	0.1	0.3	-0.4	0.9
PC-2	0.3	0.7	-0.2	-0.1	0.6	-0.1
PC-3	0.1	-0.1	0.9	0.8	-0.7	0.4
PC-4	-0.2	0.2	-0.3	0.1	-0.4	-0.2

the coefficients are the factor loading:

the correlation between the original variables and the PCs

they display a clear grouping of variables

PC-1: Si and T - as T increases the solubility increases

PC-2: Al and pH - unclear, clay effect? speciation?

PC-3: Ca, Zn, -pH and ±T - low pH + high conc. base metals: sulfides

PC-4: no clear associations - residual noise ?

You get as many PCs as there are original variables, but not all will be meaningful.

Principle component analysis - PCA

The variance in the original variables is redistributed;

PC-1 will have a variance greater than a single original variable (it explains more variance in the data set than a single original variable)

so, subsequent PCs will eventually explain less variance than a single original var

such PCs can generally be ignored thereby reducing the dimensionality

but where should we put the boundary?

the eigenvalues show you how much variance a PC explains compared to the original variables and this value can therefore be used to define a cut-off:

- all eigenvalues less than 1 are insignificant (generally too restrictive)
- use a scree plot (PC-number versus eigenvalue) where there is a kink in this
 plot: boundary use all PCs up to this point and one beyond
- maximum likelihood method the goodness-of-fit of the factor model is iteratively tested using the X² test and additional factors are calculated from the residual covariance/correlation matrix only if it fails the X² test

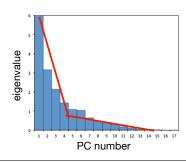
Restricting the number of PCs: FA

The variance in the original variables is redistributed;

PC-1 will have a variance greater than a single original variable (it explains more variance in the data set than a single original variable)

so, subsequent PCs will eventually explain less variance than a single original var

such PCs can generally be ignored thereby reducing the dimensionality



The cut-off can be determined in a scree-plot

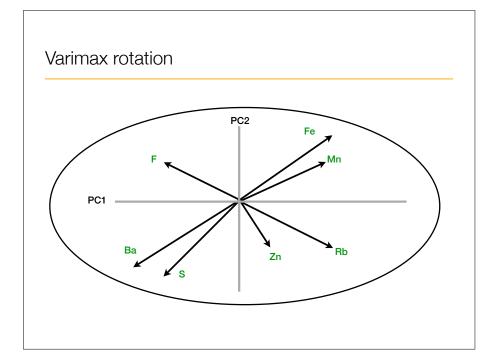
To facilitate interpretation the resulting PCs are commonly rotated in multi-dimensional space

The most popular technique is Varimax rotation:

"rotation to maximize the variance of the squared loadings within each column of the loadings matrix"

this rotation results in the correlations with the original variables to be either large or small, so it enhances the contrast, producing PCs that are highly correlated with a few original variables and weakly with the rest:

much easier to interpret, because it is immediately clear which variables are important and that in turn can directly point to the underlying process



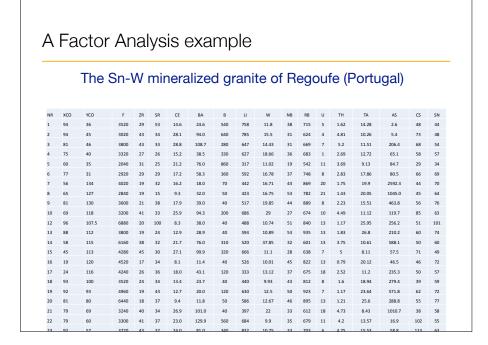
A Factor Analysis example using PAST

The Sn-W mineralized granite of Regoufe (Portugal)

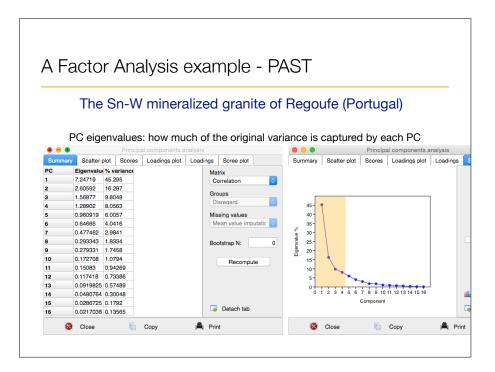
6 km² 55 samples

After cleaning 15 elements

All elements log-transformed



A Factor Analysis example - PAST The Sn-W mineralized granite of Regoufe (Portugal) The correlation matrix -0.50221 0.30731 -0.54151 -0.42003 -0 28885 0.46813 0.58401 0.012455 -0.53583 0.50034 -0.50221 0.055172 0.95109 0.86482 0.4027 -0.056488 -0.71756 -0.78795 0.012894 0.95715 0.30731 0.055172 0.062507 -0.082219 -0.076446 -0.18118 0.041973 0.0027489 0.014244 -0.0051581 0.10591 -0.54151 0.95109 0.062507 0.35716 0.03861 -0.037515 -0.72012 -0.77759 0.07226 0.96249 -0.42093 0.86482 0.066011 0.86814 0.42212 0.056067 0.079535 -0.76312 -0.75126 0.10691 0.88669 -0 28885 0.4027 -0.082219 0.35716 0.42212 0.11569 -0 10935 -0.57752 -0.55081 -0.20643 0.40807 -0.53463 0.19875 0.13749 -0.076446 0.03861 0.056067 -0.059215 0.076383 0.2815 -0 63521 0.081594 0.15289 -0.056488 -0.18118 -0.037515 0.079535 -0.10935 -0.059215 -0.12996 -0.0084492 0.15031 -0.044045 -0.09693 0.46813 -0.71756 0.041973 -0.72012 -0.57752 0.076383 -0.12996 0.81782 -0.030427 -0.7507 0.89426 0.58401 -0.78795 0.0027489 -0.77759 -0.55081 0.2815 -0.0084492 0.81782 -0.79942 0.88746 0.012455 0.012894 0.014244 0.07226 0.10691 -0.20643 -0.63521 0.15031 -0.030427 -0.18664 -0.11037 -0.53583 0.95715 -0.0051581 0.96249 0.40807 0.081594 -0.044045 -0.7507 -0.79942 0.0092227 0.50934 -0.76939 0.10591 -0.77617 -0.53463 0.10293 -0.096932 0.89426 0.88746 -0 11037 0.20773 -0.32656 -0.093352 -0.21183 -0.24763 -0.34152 -0.24679 0.29603 0.26883 0.32194 0.46611 -0.30133 0.22816 0.072648 0.29065 -0.036181 0.25418 0.29177 0.10383 0.75412 -0.09801 -0.079188 0.080846 -0.37248 0.30078 -0.06725 0.15903 -0.60059 -0.47931 -0.47726 0.28084 0.15559 0.78645

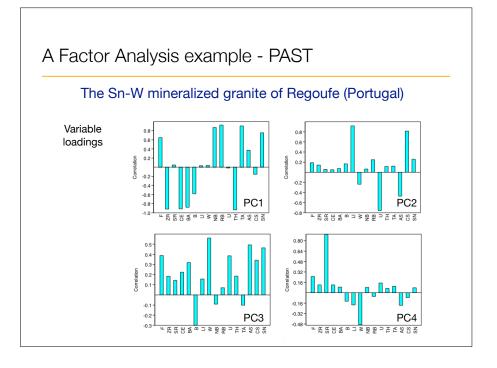


A Factor Analysis example - PAST

The Sn-W mineralized granite of Regoufe (Portugal)

A variable's communality tells you how much of its variance is explained by your factors. In this case, for 4 factors:

Comm	unalities	
	Initial	Extraction
F	1.000	.728
ZR	1.000	.944
SR	1.000	.698
CE	1.000	.905
BA	1.000	.901
В	1.000	.675
LI	1.000	.899
W	1.000	.710
NB	1.000	.790
RB	1.000	.923
U	1.000	.624
TH	1.000	.935
TA	1.000	.860
AS	1.000	.723
CS	1.000	.820
SN	1.000	.873



A Factor Analysis example - PAST

The Sn-W mineralized granite of Regoufe (Portugal)

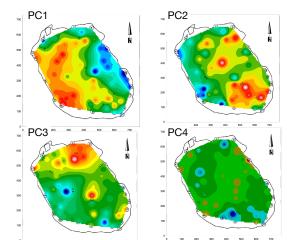
Summary	Scatter plot	Scores	Loadings plot	Loadings
	PC 1	PC 2	PC 3	PC 4
2	0.82047	1.2982	-1.6875	0.54203
3	-2.2156	2.2375	-0.19651	-0.72032
4	-1.5725	1.2107	0.83885	-0.11722
5	0.64699	1.1837	-0.96398	-1.4718
6	-2.5503	-1.9959	-2.3628	-0.84471
7	0.86607	0.86924	-0.16158	-0.85254
8	3.8211	-3.347	2.8373	-0.95335
9	3.2064	-2.6937	0.55837	-1.5285
10	2.5915	0.058918	0.78231	-0.34281
11	-1.2186	1.1672	2.1411	-1.2177
12	5.0685	0.46625	1.8525	5.2839
13	3.8793	0.46543	-0.14352	-0.37514
14	0.04771	-1.0882	3.0333	-1.1993
15	-1.8972	1.454	0.42957	-0.093339
16	3.6772	-0.28991	-0.61238	0.39277
17	0.93084	-1.9372	0.25046	0.61637
18	2.4969	-0.64977	-1.1553	0.15791
19	4.1089	1.0677	0.28669	0.42668
20	4.6143	0.41045	0.71639	0.70874
21	-0.9729	-2.7342	2.2684	-0.23563
22	-1.559	2.1812	0.63526	0.21126
23	-0.76501	3.5679	0.93892	-0.35468
24	4 0040	0.00040	0.04070	0.75000

The scores for each sample on the different factors

A Factor Analysis example - PAST The Sn-W mineralized granite of Regoufe (Portugal) Bi-plot: combines the data loadings on the PCs and the variable scores on the PCs

A Factor Analysis example

The Sn-W mineralized granite of Regoufe (Portugal)



Tentative interpretation:

PC1: inverse of degree of greisinisation and albitisation

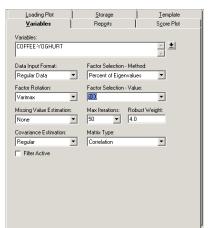
PC2: deuteric alteration

PC3: ore-related elements

PC4: different levels within the granite magma body

Factor Analysis vs. Cluster Analysis

the data set: the eating habits of Europe



variables: the original variables as input

rotation: you can tell NCSS to perform a PC rotation such as Varimax or none

missing values: if you have these you have to tell NCSS how to deal with them: row-wise exclusion, replace by mean or estimate from correlations

matrix type: correlation or covariance

factor selection: start by selecting % eigenvalues and setting this to 100%: gives you all PCs. Can then decide that only first 4 are meaningful and change this

output: the eating habits of Europe

Descriptive Statistics Section

			Standard	
Variables	Count	Mean	Deviation	Communality
Coffee	16	77.5	25.76561	1.000000
Nescafe	16	39.25	23.14735	1.000000
Tea	16	78.5	18.54005	1.000000
Sweetener	16	17.1875	11.02252	1.000000
Biscuits	16	60.875	19.18637	1.000000
Pack_soup	16	49	15.42725	1.000000
Tin_soup	16	18.4375	20.2154	1.000000
Frozen_fish	16	21.875	13.98034	1.000000
Frozen_veg	16	15.875	12.78997	1.000000
Fresh_apples	16	66.8125	17.58112	1.000000
Tin_fruit	16	41.9375	23.25645	1.000000
Jam	16	55.1875	22.59268	1.000000
Garlic	16	42.3125	34.67702	1.000000
Butter	16	75.8125	20.91002	1.000000
Margerine	16	69	26.73076	1.000000
Olive_oil	16	54.1875	28.8426	1.000000
Yoghurt	16	20.625	18.34076	1.000000

Principle component analysis - PCA

output: the eating habits of Europe

Correlation Section										
Variables	Variables Coffee	Nescafe	Tea	Sweetener	Biscuits	Pack soup	Tin_soup	Frozen fish	Frozen veg F	
Coffee	1.000000	-0.451482	-D 154771	0.267487	-0.106133	-0.302228	-0.238387	0.409759	0.315186	1
Nescafe	-0.451482	1.000000	0.290961	0.228696	0.259018	0.727154	0.506803	-0.291814	-0.064515	-
Tea	-0.154771	0.290961	1.000000	0.669251	0.209905	0.441225	0.523398	0.320735	0.478507	-
Sweetener	0.267487	0.228696	0.669251	1.000000	0.186738	0.226212	0.495064	0.617516	0.814964	-
Biscuits	-0.106133	0.259018	0.209905	0.186738	1.000000	0.313521	0.548802	0.029017	0.232484	
Pack soup	-0.302228	0.727154	0.441225	0.226212	0.313521	1.000000	0.244120	-0.243882	-0.085481	
Tin soup	-0.238387	0.506803	0.523398	0.495064	0.548802	0.244120	1.000000	0.189154	0.474401	
Frozen fish	0.409759	-0.291814	0.320735	0.617516	0.029017	-0.243882	0.189154	1.000000	0.905160	
Frozen veg	0.315186	-0.064515	0.478507	0.814964	0.232484	-0.085481	0.474401	0.905160	1.000000	
Fresh apples	0.241139	0.480764	0.133454	0.423680	0.538291	0.480530	0.335071	0.030005	0.285694	
Tin fruit	-0.100075	0.694902	0.546490	0.646054	0.672017	0.613927	0.740128	0.269813	0.530707	
Jam	-0.385434	0.383235	0.538513	0.410780	0.431766	0.366096	0.729504	0.088306	0.339465	
Garlic	0.110990	0.033616	-0.593807	-0.520098	-0.351444	0.015203	-0.546658	-0.322249	-0.473994	
Butter	-0.140384	0.154920	0.302403	0.094169	0.455585	0.114699	0.133634	0.043929	0.186117	
Margerine	-0.174813	0.387019	0.534448	0.351163	0.233069	0.319930	0.300657	0.031041	0.148003	
Olive_oil	0.022293	0.075116	-0.480293	-0.432305	-0.139580	-0.049143	-0.183091	-0.111702	-0.197097	-
Yoghurt	0.313610	0.497244	0.003725	0.196254	0.011225	0.409263	0.036074	-0.259675	-0.144018	-

Principle component analysis - PCA

output: the eating habits of Europe

Bar Chart of Absolute Correlation Section

	variables								
Variables	Coffee	Nescafe	Tea	Sweetener	Biscuits	Pack_soup	Tin_soup	Frozen_fish	Frozen_veg
Coffee		IIIIIIIII	III	IIIII	III		IIII		IIIIII
Nescafe				IIII	IIIII				
Tea	IIII	IIIII			IIII				IIIIIIIII
Sweetener	IIIII	IIII			III	IIII	IIIIIIIII		
Biscuits	III	IIIII	IIII	III		IIIIIII	IIIIIIIIII	1	IIII
Pack_soup	IIIIII			IIII	IIIIII		IIII	IIII	II
Tin_soup	IIII			HIIIIIII		IIII		III	
Frozen_fish	HIIIIIII	IIIII			1	IIII	IIII		
Frozen_veg	IIIIIII				IIII		IIIIIIIII		
Fresh_apples	IIII		III	IIIIIIII			IIIIII	1	IIIII
Tin_fruit	III							IIIII	
Jam	IIIIIII			IIIIIIII	IIIIIIII	IIIIIII		II	IIIIII
Garlic	III	1		HIIIIIIII		1		IIIIII	
Butter	III	IIII		II		III	III	1	III
Margerine	IIII	IIIIIIII		IIIIIII	IIII	IIIIIII	IIIIII	1	III
Olive_oil	1	II	IIIIIIIII	IIIIIIII	III	1	III	III	III
Yoghurt	IIIIII		1	III	1			IIIII	III

Principle component analysis - PCA

output: the eating habits of Europe

		Individual	Cumulative		6
No.	Eigenvalue	Percent	Percent	Scree Plot	
1	6.020081	35.41	35.41	IIIIIII	
2	3.156737	18.57	53.98	III	5
3	2.139819	12.59	66.57	III	
4	1.425082	8.38	74.95	ii ii	
5	1.078415	6.34	81.29	ii .	4 -
6	1.037413	6.10	87.40	ii .	
7	0.642829	3.78	91.18	Ï	
8	0.465207	2.74	93.92	İ	3
9	0.368342	2.17	96.08	i	
10	0.319876	1.88	97.96	i	
11	0.172239	1.01	98.98	i	2 *
12	0.106809	0.63	99.60	i	
13	0.037875	0.22	99.83	i	1
14	0.026913	0.16	99.99	Ĺ	
15	0.002364	0.01	100.00	Ĺ	
16	0.000000	0.00	100.00		
17	0.000000	0.00	100.00		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

now rerun the routine for up to 4 principle components

output: the eating habits of Europe

Descriptive	Statistics	Section

			Standard	
Variables	Count	Mean	Deviation	Communality
Coffee	16	77.5	25.76561	0.825747
Nescafe	16	39.25	23.14735	0.826203
Tea	16	78.5	18.54005	0.712119
Sweetener	16	17.1875	11.02252	0.885670
Biscuits	16	60.875	19.18637	0.638357
Pack_soup	16	49	15.42725	0.712475
Tin_soup	16	18.4375	20.2154	0.687004
Frozen_fish	16	21.875	13.98034	0.848950
Frozen_veg	16	15.875	12.78997	0.936613
Fresh apples	16	66.8125	17.58112	0.781884
Tin fruit	16	41.9375	23.25645	0.929247
Jam	16	55.1875	22.59268	0.706079
Garlic	16	42.3125	34.67702	0.839802
Butter	16	75.8125	20.91002	0.386488
Margerine	16	69	26.73076	0.404393
Olive_oil	16	54.1875	28.8426	0.682256
Yoghurt	16	20.625	18.34076	0.874905

Principle component analysis - PCA

output: the eating habits of Europe - coefficients

Bar Chart of Absolute Eigenvectors after Varimax Rotation

	Factors			
Variables	Factor1	Factor2	Factor3	Factor4
Coffee	ll .	IIIII		III
Nescafe	IIII			
Tea	IIIIII	ll .	III	IIII
Sweetener	IIIIII	IIII	IIII	III
Biscuits	IIII	III	Ī	11111111
Pack_soup	IIIII	IIIIIII		III
Tin_soup	IIIIII	1	III	IIII
Frozen_fish	III	IIIIIIII	IIII	III
Frozen_veg	IIIII	IIIIIII	IIII	IIII
Fresh_apples	IIII	IIII	IIIIIII	
Tin_fruit	IIIIIII	III	III	IIII
Jam	IIIIII	1	IIIII	
Garlic	IIIII	IIII	IIIIII	III
Butter	III	ll .		HHHHH
Margerine	IIIII	1	IIII	IIII
Olive_oil	IIII	IIII	IIII	1111111111
Yoghurt	II	IIIII	IIIIIIIII	IIIIIIII

Principle component analysis - PCA

output: the eating habits of Europe - correlations

Bar Chart of Absolute Factor Loadings after Varimax Rotation

F	actors			
Variables F	Factor1	Factor2	Factor3	Factor4
Coffee		IIII		
Nescafe	IIIIII		IIII	
Tea	III			IIII
Sweetener		IIIIII		III
Biscuits		IIII	IIII	
Pack_soup	IIIII		IIIII	
Tin_soup				
Frozen_fish		IIIII	III	III
Frozen_veg			IIIIIIII	
Fresh_apples	IIII		1	
Tin_fruit	IIII			
Jam				
Garlic	III	IIII		IIII
Butter				
Margerine		III		IIII
Olive_oil				
Yoghurt	l			IIIII

Principle component analysis - PCA

output: the eating habits of Europe

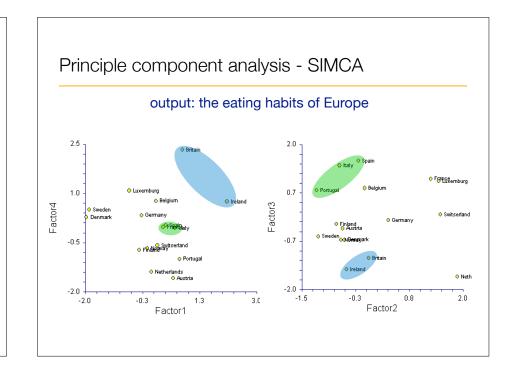
Factor Structure Summary after Varimax Rotation

	Factors		
Factor1	Factor2	Factor3	Factor4
Frozen_fish	Yoghurt	Garlic	Biscuits
Frozen_veg	Fresh_apples	Tea	Tin_fruit
Coffee	Nescafe	Olive_oil	Butter
Sweetener	Pack_soup	Jam	Tin_soup
	Tin_fruit	Sweetener	
		Margerine	
		Tin_soup	

output: the eating habits of Europe - new row transformation

Factor Score after Varimax Rotation

Factor Score after Varintax Rotation						
	Factors					
Row	Factor1	Factor2	Factor3	Factor4		
1	-0.3644	0.3788	-0.0904	0.3360		
2	0.6165	-0.6782	1.4195	-0.0599		
3	0.2665	1.2995	1.0593	-0.0254		
4	-0.0786	1.8754	-1.6456	-1.3972		
5	0.0605	-0.1348	0.7957	0.7732		
6	-0.7204	1.4754	0.9845	1.0832		
7	0.8281	-0.0470	-1.1348	2.3280		
8	0.7444	-1.1724	0.7406	-1.0016		
9	0.5602	-0.6078	-0.3117	-1.5889		
10	0.0995	1.5130	0.0692	-0.5877		
11	-1.8878	-1.1434	-0.5359	0.4995		
12	-1.9707	-0.5770	-0.6248	0.2745		
13	-0.1946	-0.6459	-0.6321	-0.6754		
14	-0.4299	-0.7455	-0.1961	-0.7278		
15	0.3406	-0.2631	1.5489	0.0244		
16	2.1301	-0.5269	-1.4462	0.7452		



PLS-R and PLS-DA

An extension to eigenvector methods with a dependent variable

PCA and FA re-cast the independent variable matrix into a new coordinate system aligned with the directions of maximum variance with the aim of separating noise from information, reducing the dimensionality of your data, and identify processes

PLS-R and PLS-DA re-cast the independent variable matrix into a new coordinate system aligned with a **dependent variable** (Y = f(X)) with the aim of classification (-DA) or quantification of a regression model (-R), for example for calibration.

You can of course do a DA or R based on the original variables, but you here make the assumption that there are directions in your data that better line up with Y than the original variables —> you obtain those from a PCA-style transformation of your data

