Data analysis and Geostatistics - lecture X

Discriminant function analysis and clustering

Multi-variate techniques

Have now finished data description and statistical testing
will now move to more advanced (multi-variate) techniques:

Regression analysis; quantitative description of trends in data - allows for
interpolation and extrapolation beyond the input data

Discriminant function analysis; a means to differentiate groups in a data
set - used to differentiate and classify

Principal component and factor analysis; determine directions in a data
set to reduce the number of variables and/or look for processes in the data

Cluster analysis; group data into homogenous clusters - used to differen-
tiate and to split up multi-modal data sets for use in other stat techniques

Spatial geostatistics; techniques for mining spatially distributed data

Multi-variate techniques: regression

Key aspects of regression analysis

It generates a model of your data; quantitative description of trends in
data - allows for interpolation and extrapolation beyond the input data

Strict requirements; normality and no trends or bias in the residuals, no
overly influential data points

Significant, meaningful and predictive; need to test that the coefficients
and model are significant (r = 0, bi # 0), that the equation chosen is the most
appropriate and that the model is predictive (no overfitting)
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Separation and classification of data

Two main statistical techniques used to separate and classify:

Discriminant function analysis - DFA

Cluster analysis

Goals of these techniques:

» to separate
majority of statistical techniques cannot be applied to multi-modal
data sets: have to split them into homogenous groups.

» to classify
to what group should a sample be assigned. Examples: soil classi-
fication, rock classification, etc. Use the combination of a variety of
characteristics to link unknowns to specific (pre-defined) groups.

Separation and classification of data
The two techniques have a somewhat different focus:

Discriminant function analysis:
find a function/vector that best separates the groups in
your data set

Cluster analysis:
group samples into clusters based on their similarity

both techniques allow you to quantify the degree of
membership to each cluster

Discriminant function analysis

Examples of discriminant function analysis

2D case: difference between athletes multi-D case: boundary mapping

can directly visualize the DF
tics that are then plotted in space

DF combines multitude of characteris-
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Discriminant function analysis

How do we determine a discriminant function ?

Need a training set that defines the groups: data with known grouping
e.g. a characteristic group of boxers and basketball players
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Next: search within this training set
for the vector that leads to optimal
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This function can then be used to
classify unknowns
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Discriminant function analysis

How do we determine a discriminant function ?

The vector of maximum separation can be obtained by sum of squares
methodology

so let’s have another look at the sum of squares:

SS=)(x,—X)* the cumulative deviation from a mean

SSuwithin: the cumulative deviation of the data from
#  SSuithin their respective group’s mean - within variance

SSiotal SStotai: the cumulative deviation of the data from
the overall data mean - total variance

SSbetween
SShetween: the cumulative deviation of the group
means from the overall mean - between variance

SSuithin

Discriminant function analysis

a good DF is a function where SSpetween >> SSwithin

Find the best DF by optimizing the function for maximum SSeetween / SSwithin
DF = bo + b1X1 + b2X2 + baXs + baXs + ....

fitting of the b - coefficients is generally done by iteration and is thus best
performed by a computer program.

when data strongly correlated:
SSuwithin the mean not the best descriptor

SShetween when calculating the cum. dev.

Instead: use the cumulative
deviation from the covariance
trend: the mean vector

to work: correlations within groups
have to be similar between groups

SSuithin

Discriminant function analysis

Not all variables in the DF are necessarily significant

Have to check if each variable adds something to the separating power of
the equation - if not: remove the variable from the DF

DF = bo + b1X1 + b2Xo + baXsz + baXs + ...

How to check for significance:

include everything and test the significance using F and tolerance tests,
then rerun with subset of significant variables
F-tests: does my fit significantly improve by including this variable ?
tolerance: is this var’s separation already covered by another var ?

include variables stepwise and determine how the fit (correct assignment
of training set) improves as you add variables

Both are affected by the order of inclusion/exclusion of variables .....

Discriminant function analysis
requirements for discriminant function analysis:

data must be derived from multi-variate normal distributions

covariance matrices should be same for each group
(the mean vectors should be parallel)

if not:

can still apply discriminant function analysis, but the resulting functions will
not be linear, and significance and goodness-of-fit are much more difficult to
assess




Discriminant function analysis

DFA to determine the location of a geological boundary

7 the contact between a granite and a schist:
b o
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Discriminant function analysis with PAST
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Discriminant function analysis with PAST
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3 1.7325 10 0 22 22 Columns: Predicted grps
a -2.2507 Axis 1 Total 46 23 69
5 0.58595 Sioz 0.074055 Jackknifed
6 0.90136 AI203 017649
7 1.35 Fe203 1.0443 % correctly classified:
8 11304 cao -0.57169
° 2.5792 Ma0, 13128
10 13678 K20 -0.027256
" 2.3333 Mno -5.3349
12 2.5206 Tio2 -0.0263
13 13713 P205 0.00055494
14 13343 Li 0.0027225
15 21572 Be 0.0028415
6 16589 B -0.0090147
17 14 v 0.0059463
Cr -0.071659
Co 0.061826
Ni 0.03194
Cu -0.033276
Zn -8.8537E-0¢
As -0.0052967
Sr 0.017747
Y -0.15769
Nb -0.033292
Mn N INNR2

Discriminant function analysis with PAST

Plot | Scores | Loadings Confusion matrix

Point Given group Classification Jackknifed
46 7 7 7
47 7 7 7
48 7 7 7
49 ? 10

50 ? 10

51 ? 10

52 ? 10

53 ? 10

54 ? 10

55 ? 10

56 ? 10

57 ? 10

58 ? 10

59 ? 10

60 ? 10

61 ? 10

62 ? 10

63 ? 7

64 ? 10

65 ? 10




Discriminant function analysis

Discriminant function analysis with NCSS: check the tutorial

Variable Influence Section

Removed Removed Removed Alone Alone  Alone

Variable Lambda  F-Value  F-Prob Lambda  F-Value F-Prob

Si02 0929825 340 00719400 0532143 6506 0000000
ARO3 0957967 197 0166838 0918458 657 0012403
Fe203 0997191 013 0723460 0.469680 8355 0.000000
Ca0 0866789 692 0011653 0996300 027  0B01687
MgO 0913752 425 0045116 0959101 316 0079778
K20 0764824 1384 0000551 0761153 2322 0000007
MnO 09396012 018 0673246 0912984 705 0009686
Tio2 0812242 10.40 0002347 0615201 4629 0000000
F205 0892082 544 0024167 0708030 3052 0000000
Li 0919225 395 0052854 0227281 25153 0000000
Be 0966909 154 0221043 0241558 23234  0.000000
B 0972051 129 0261353 0389654 11591  0.000000
A 0958531 195 0169777 0533296 6476 0000000
Cr 0910433 443 0040934 0985079 112 0293171
Co 0973536 122 0274603 0630067 4345 0000000
Ni 0975333 114 0291743 0781352 2071 0000021
Cu 0960009 187 0177750 0412601 10535 0.000000
In 0996957 014 0712653 0940833 465 0034234
As 0978912 097 0330084 0938756 483 0031136
Sr 0975353 114 0291945 0991157 066 0419100
Y 0996994 014 0714331 0928123 573 0019204
Nb 0830807 9.16 0004074 0999987 000 0975186
Mo 09397030 013 0715968 0625719 4426 0000000
Sn 0933963 318 0081209 0.199167 29755 0.000000
Sh 0986739 080 0440835 0956418 337 0070328
Ba 0997823 010 0755466 0565783 5679 0000000
La 0970122 139 0245282 0961321 298 0088608
Ce 0986945 060 0444426 0965343 266 0107397
Pb 0986018 064 0428595 0612586 4680 0000000
Ir 0988784 051 0478639 0769770 2213 0000012

R-Squared

Other X's
0897321
0841157
0877096
0969604
0960142
0874850
0843421
0959324
0785085
0946061
0962685
0888401
0968710
0874521
0960442
0975646
0899286
0826045
0761502
0934216
0915249
0855943
0781241
0960175
0633268
0739602
0988756
0989428
0738825
0818772

tutorial tells you what
all input and output
means + requirements

check for

significance of the
variables with F-tests:
» removed F-prob
should be < a
» alone F-prob
should be < a

check for tolerance
issues with R?:
if 1-R2 is low, the var
doesn’t add diff

Discriminant function analysis

Variable Influence Section

Removed Removed Removed Alone Alone  Alone R-Squared all variables are now
Variable Lambda  F-Value  F-Prob Lambda  F-Value F-Prob Other X's . f . h DF
K20 0743857 2410 0000006 0761159 2322 0000007 0355752
F205 08394571 825 0005380 0708030 3052 0000000 0.347597 Slg ni Icant n t e
B 0715202 2787 0000001 0389654 11591  0.000000 0669410
Cu 0900233 776 0006876 0.412601 10535  0.000000 0642587
Sn 0588693 4891 | 0000000 0199167 29755 0000000 | O/BES0E3 no tolerance issues
Linear Discriminant Functions

geolcode
Variable 7 9 NCSS .
Constant -35.90635 -42.90045 gives you two
K20 8120147 3320085 . P
P205 2697954E03  BO5B51BED3 discriminant vectors
B -3.353538E:02 0.1448863
cu 03007292 01507453 based on these vars
Sn 0.1338246 10996
Classification Count Table for geolcodd

Predicted
Actual o 2 = only one sample is
9 0 3 E assigned incorrectly:
Total 46 30 76 .
Reduction in classffication error due to X's =97 4% (o) Utl ler
Reduction in classification error due to X's=K20,F205,B, Cu, Sn
Canonical Variate Analysis Section

Inv(W)B Indl  Total Canon Canon Numer Denom  Prob Wilks* . . . -

Fn Eigenvalue Pent  Pent  Comr Con2  F-Value DF DF Level Lambda DF IS h |g h |y S|gn|f|cant
1 10974471 1000 1000 09573 08165 1536 50 700 00000 0083511

Discriminant function analysis
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Discriminant function analysis

topographic view
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5 vars that lead to maximum separation of
the groups - two vectors in multi-D space

Discriminant function analysis

Use the vectors to assign the unknowns - not all fit with these groups
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Other discriminating approaches

Given how important classification is, there are many more
techniques that have been devised for this;

QDA - quadratic discriminant function

PCA-LDA - discriminant analysis on transformed coordinate
axes (principal components)
PLS-DA - discriminant analysis on transformed coordinate
axes with axis directions optimized for discrimination

mapping (hypercube logic, random forest, etc) - mapping
“routes” in multivariate space to the desired outcome

Cluster analysis

Group samples into clusters based on similarity

Cluster analysis requires substantial user input
(selection of number of clusters, clustering routine, similarity criteria, etc)

and results can therefore be ambiguous:

always give detailed information on how your cluster analysis
was performed




Cluster analysis

Group samples into clusters based on similarity

whichever deviation between sample

’ cluster and cluster mean is smallest:

mean A
assigned to that cluster

Cluster analysis is again controlled by
the sum of squares:

SSwithin SShetween A-B

SSwithin SSbetween B-C

cluster
mean B

(Xi-Xa)

Xi-XB)

Xi-X
(I C) cluster SSwithin SSbetweenA—C

mean C small variance within: tight clusters

large variance between: good separation

increasing the number of clusters will decrease the within variance, until all
samples are their own cluster. That result is however meaningless....

Cluster analysis - sample assignment criteria
range of techniques that can be used to determine similarity

Wide range of techniques - see book for details

\ cluster
mean A » Euclidian distance - r or r2
— » city block of Manhattan distance - this is
useful when the two variables are separate
cluster characteristics (fossil length and width, the
mean B diagonal is not of interest)

T » correlation similarity - sample with the
R

same correlation are grouped together:
deals with dilution effects

cluster
mean C

o » association values - especially useful

when you have only presence/absence data
- specialized

Cluster analysis - two types

Two varieties of clustering: hierarchical and partitioning methods

hierarchical techniques: represent similarity in a tree or dendrogram
the method:

1. all samples are a separate cluster

2. link the two most similar samples

3. link two other samples to form a new cluster or add a third
sample to the first cluster depending on similarities

4. continue until only one cluster remains

in this technique all intermediate steps and cluster associations are

immediately available - depends on the user to select an appropriate
“pruning” level in the tree

there are many ways to link samples and these do result in different trees (see book for details)

Hierarchical cluster analysis

An example of hierarchical clustering:

the composition of a number of lava samples from Kawah ljen volcano:

degree of dissimilarity

sample > dissimilarity based upon
KVO1 nearest neighbour
KV20 }— criterium
KV41 the resulting tree can be

Kv43 “pruned” at any level:

KVv08 —l up to the user to select
Kv10 ———-

KV12

KV14 5

KV14

KVv21

Kvo1 —i— ‘ basalt dacite

clusters 11 9 4 2 andesite  duplicate

should test if difference
between groups is
significant (which test?)




Clustering - partitioning techniques

Two varieties of clustering: hierarchical and partitioning methods

partitioning techniques: assigns samples to a known number of

clusters based upon similarity criteria

the method:

1. samples are assigned to the cluster they are most similar to in

multi-dimensional space

2. each assignment results in a shift in the characteristics of the

cluster centre (means + variance or only variance)

3. samples are re-assigned where necessary and this routine is

iterated until the system stabilizes

There are two main approaches:

clustering with specified cluster means (i.e. known groups) and
clustering where the means are obtained during clustering

both have their pros and cons:

Partitioning techniques

advantages

disadvantages

specified/
fixed

assigned/
sought

> you always get the same
answer during classification

> groups can relate to real
dividing phenomena

> unknowns are (generally)
easily classified

» data groups not split up over
different clusters

> boundaries always in regions
of low data density

> easy to apply to data sets
with many variables

» boundaries commonly based
on consensus (artificial)

» 2 samples close together can
be in different clusters

» 2 very different samples can
be in same cluster

> instability issues: more data
will result in shift in cluster
means and sample assignment

* no fixed boundaries so
unsuitable for classification
schemes

Clustering with hard boundaries
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2 samples close
together can be in
different clusters

2 very different
samples can be in
same cluster

Partitioning techniques

advantages

disadvantages

specified/
fixed

assigned/
sought

> you always get the same
answer during classification

> groups can relate to real
dividing phenomena

> unknowns are (generally)
easily classified

> data groups not split up over
different clusters

> boundaries always in regions
of low data density

> easy to apply to data sets
with many variables

> boundaries commonly based
on consensus (artificial)

» 2 samples close together can
be in different clusters

» 2 very different samples can
be in same cluster

> instability issues: more data
will result in shift in cluster
means and sample assignment

*» no fixed boundaries so
unsuitable for classification
schemes




Cluster means assigned during clustering:

when cluster means are specified: use minimum distance to mean to assign
if not: randomly assign each sample to a cluster and iterate to stable solution

e o, o, e o ° o both cluster means
° ° ° :
e o ° and cluster assign-
° ° e ¢ ° o x* ¢ ment change during
° ° ° ® the iteration
e o X o° o o °*®
° o o ® o o x . e ®Xe
° ® ° o process stops when
° ° ° °
° ° ° °
° ® ° ® ® samples no longer
change their assign-
e ® e o o ° o ment
o ® o ° o ® °
® L] e ® Y ° e e
° ° ° °
° b o ° ° o ° @ cluster A
.. x o ® .. e o .' xXe ® ..X. ® clusterB
° ° ° °
° o Lo . ° o Lo @ cluster C
X center

Cluster analysis - method of assignment

Samples are normally assigned to a cluster in a “hard” way:

samples are unambiguously attributed to a
specific cluster - 0 or 1 assignment

However, mother nature is rarely so black and white....

“middle age” cluster depends very much on percon/country/continent

young

middle
age

old

1

young

middle
age

old

if age is between
A and B: middle
age

fuzzy approach:
samples have
cluster member-
ships between 0
and 1

Fuzzy clustering

fuzzy clustering has a number of distinct benefits:

can deal with intermediate cases - not force-assigned
samples have share multiple clusters - extra information:

(0.7 young + 0.3 middle age versus 0.5 young + 0.5 middle age)
ensures that single samples do not overly control individual clusters
can have a separate outlier assignment

most flexible and powerful: fuzzy clustering with seeking of cluster means

hard clustering

strained assign-
ment due to
outlier and inter-
mediate value

* %
‘.

* %
‘“
»*
*

fuzzy clustering

outlier not a
* | problem and
intermediate
shown

Clustering in NCSS - the eating habits of Europe

can we distinguish the Europeans by their eating habits?

country

Germany 90
Italy 82
France 88
Netherlands 96
Belgium 94
Luxemburg 97
Britain 27
Portugal 72
Austria 55
Switserland 73
Sweden 97
Denmark 96
Norway 92
Finland 98
Spain 70
Ireland 13

Real coffee

|Coffee |NescafiTea

49 88

10 60
42 63
62 98
38 43
61 86
86 99
26 77
31 B1
72 85
13 93
17 92
17 83
12 84
40 40
52 99
2 8
8 =
8

z
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2
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1"

28
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13

20
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"

Sweetener

the data (missing value = -999):

57
55
76
62
74
79
91
22
23
31
-999

51

4

53
67
37
73
55
34
33
69
43
32
51

27
43
75

Pack. soup

19 27
3 4
1 "
43 14
25 13
12 26
76 20
1 20
1 15
10 19
43 54
17 51
4 30
10 18
2 23
18 5
g &
® c
£ w
=

21 81
2 67
5 87

14 83

12 76

23 85

24 76
3 2

1 49

15 79

45 56

42 81

15 B1

12 50
7 59
3 57

U" (%]

f 4
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g

w

44

9
40
61
42
a3
89

g
14
46
53

Tinned fruit

71 22
46 80
45 88
81 15
57 29
20 9N

91 1"

16 89
4 51
61 64
75 9
64 "
51 "
37 15
38 86
89 5
£ L

< =

v 3

|Garlic |Butter [Marger Olive_{Yoghur

91 85 74 30
66 24 94 5
94 47 36 57
3 97 13 53
84 80 a3 20
94 94 84 31
95 94 57 1"
65 78 92 6
51 72 28 13
g2 48 61 48
68 32 48 2

92 N 30 1"
63 94 28 2
96 51 17 899
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Clustering in NCSS - the eating habits of Europe

hierarchical clustering of this data set: clear clustering

Clustering in NCSS - the eating habits of Europe

K-means - hard

fuzzy-prob 1

fuzzy-prob 2

hard and fuzzy clustering of this data set:

fuzzy-prob 3 fuzzy-prob 4

country lots of options available:
Finland .
Spain use parametric and non-
Norway parametric data and even
GallsiTl] mix these (length + color)
Portugal
Italy i X

—— Denmark variety of linkage types:
Sweden nearest neighbour, furthest
Ireland neighbour, Ward’s method

Netherlanc

—— Lixembur distance: Eu<_:||d|an or
Belgium Manhattan city block
France
Switserlar see the NCSS hierarchical
Germany . .
—— by clustering tutorial for more
8.00 6.00 4.00 2.00 0.00 information

Dissimilarity

Germany 2 0.04 0.02 0.83 0.11
Italy 3 0.01 0.93 0.04 0.02
France 2 0.05 0.12 0.77 0.06
Netherlands 2 0.23 0.07 0.53 0.16
Belgium 2 0.08 0.25 0.56 0.11
Luxembourg 2 0.09 0.06 0.75 0.1
Britain 4 0.92 0.01 0.04 0.03
Portugal & 0.02 0.92 0.04 0.03
Austria 3 0.03 0.87 0.06 0.05
Switzerland 2 0.05 0.05 0.86 0.05
Sweden 1 0.05 0.04 0.08 0.82
Denmark 1 0.03 0.02 0.07 0.88
Norway 1 0.03 0.07 0.1 0.8
Finland 1 0.06 0.22 0.16 0.57
Spain 8] 0.02 0.83 0.11 0.04
Ireland 4 0.88 0.04 0.06 0.03

Plotting clusters on maps - Massif Central dataset

Will look at an example from the Massif Central in France. A dataset of the
chemical composition of stream sediments collected in an area with a
diverse geology and old, now abandoned, mining for Sb, As, Pb, Au, Ba & F

Geology consists of:

“recent”

felsic gneisses volcanics

Il mafic gneisses
[ | and schists

- (meta) - granite

Il scdiment (incl coal) 5 km

Clustering - groups in Massif Central dataset

The dataset is best described when split up into six clusters

clear link to the
bedrock geology,
but not1to 1




Clustering - properties per cluster

when the data have been clustered: can look at the characteristics of
each cluster (mean + stdev) and correlations within this
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Clustering - groups in Massif Central dataset

Can plot clusters individually to look at spatial distribution and contents

%00 ©° cluster 1
cluster 2
cluster 3
cluster 4

cluster
separation
isn’t perfect

only cluster 4
is distinct in Li:
multi-element
separation

Clustering - number of clusters

the main difficulty in cluster analysis is choosing the no. of clusters

NCSS, PAST and other clustering packages will calculate assignments for
a cluster number range

the residual variance will decrease with every additional cluster so this is
not a good indicator of optimal no. of clusters

instead:
choose no. of clusters where variance no longer strongly decreases

use the averaged silhouette value: comparison between a value’s
dissimilarity with its cluster and the dissimilarity with its nearest neighbour:
ranges from 1to-1: > 0.75: good model < 0.25: poor model

Use the fuzziness of the model (0; completely fuzzy to 1; hard)
Fc(U) and Dc(U) parameters:  max Fc(U) + min Dc(U) = best model

DFA and cluster analysis summarized

why:

need data to be in homogenous groups
group and classify as a data analysis tool

how:
discriminant function analysis
derive separating vectors from training set

cluster analysis
fixed/specified cluster means/medians or obtained in clustering
hierarchical, hard or fuzzy

requires:

lots of normally distributed variables




