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A principal goal of volcanology is to successfully forecast the start of volcanic eruptions. This paper 
introduces a general forecasting method, which relies on a stream of monitoring data and a statistical 
description of a given threshold criterion for an eruption to start. Specifically we investigate the timing of 
intrusive and eruptive events at inflating volcanoes. The gradual inflation of the ground surface is a well-
known phenomenon at many volcanoes and is attributable to pressurised magma accumulating within a 
shallow chamber. Inflation usually culminates in a rapid deflation event caused by magma escaping from 
the chamber to produce a shallow intrusion and, in some cases, a volcanic eruption. We show that the 
ground elevation during 15 inflation periods at Krafla volcano, Iceland, increased with time towards a 
limiting value by following a decaying exponential with characteristic timescale τ . The available data for 
Krafla, Kilauea and Mauna Loa volcanoes show that the duration of inflation (t∗) is approximately equal to 
τ . The distribution of t∗/τ values follows a log-logistic distribution in which the central 60% of the data 
lie between 0.99 < t∗/τ < 1.76. Therefore, if τ can be constrained during an on-going inflation period, 
then the cumulative distribution function of t∗/τ values calibrated from other inflation periods allows 
the probability of a deflation event starting during a specified time interval to be estimated. The time 
window in which there is a specified probability of deflation starting can also be forecast, and forecasts 
can be updated after each new deformation measurement. The method provides stronger forecasts than 
one based on the distribution of repose times alone and is transferable to other types of monitoring data 
and/or other patterns of pre-eruptive unrest.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Forecasting the onset, size, location, style and duration of a 
volcanic eruption is an important and challenging goal of vol-
canology. In terms of forecasting the start of an eruption, one 
approach is to use a time series of monitoring data to extrapolate 
to the time at which the measured parameter will reach a known 
threshold value at which an eruption starts (Chadwick et al., 2012;
Nooner and Chadwick, 2016). The theoretical basis of this approach 
is exemplified by the materials failure forecast method (Voight, 
1988) and relies on the eruption threshold condition being known 
precisely. This approach can, in principle, predict the time at which 
failure is reached, and an eruption starts. In practice, however, un-
certainty in the data, in the model of the time-dependence of the 
measured quantity, in the fitting of data to a model, and in the ex-
trapolation of the fitted trend result in uncertainty in the predicted 
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eruption onset time, although the uncertainty diminishes with in-
creasing time (Bell et al., 2011, 2013).

Alternatively, monitoring data can be used to make a judge-
ment of the likelihood of an eruption starting within some future 
time window, such as “the next N days” (Dzierma and Wehrmann, 
2010), rather than pin-pointing the eruption time. This type of 
approach may use a statistical analysis of a volcano’s long-term 
record of repose periods (reviewed by Marzocchi and Bebbing-
ton, 2012), or interpretation of on-going short-term unrest (e.g., 
Swanson et al., 1983, 1985; Linde et al., 1993; Harlow et al., 1996;
Chadwick et al., 2012; and reviews by Sparks, 2003; Bell et al., 
2015; Pallister and McNutt, 2015). Useful measures of unrest 
for this purpose include the rates of seismicity (Voight, 1988; 
Cornelius and Voight, 1994, 1995; Kilburn, 2012; Robertson and 
Kilburn, 2016), changes in the seismic properties of the volcano 
(Brenguier et al., 2008; Chouet and Matoza, 2013; Crampin et al., 
2015), the gas composition or emission rate (Carapezza and Fed-
erico, 2000; Laiolo et al., 2012; Aiuppa et al., 2007; Carapezza 
et al., 2009; De Moor et al., 2016), thermal remote sensing data 
(van Manen et al., 2013; Reath et al., 2016), crustal deformation 
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(Linde et al., 1993) and ground surface deformation (Chadwick et 
al., 2012; Segall, 2013). Methods which combine two or more 
types of data have also been advocated (e.g., Klein, 1984; Schmid 
et al., 2012; Pallister and McNutt, 2015). Given an empirically-
defined statistical model connecting the magnitude of unrest and 
the time remaining to an eruption onset, then quantitative prob-
abilistic forecasts of an eruption starting within a particular time 
window can be made. An example is the forecasting of explosive 
eruptions during dome-forming episodes of Bezymianny volcano 
using thermal remote sensing data (van Manen et al., 2013). The 
forecasting of eruption duration using historical data (Sparks and 
Aspinall, 2004; Gunn et al., 2014; Wolpert et al., 2016) relies on 
the same type of analysis. This paper applies this statistics-based 
approach to the surface inflation that precedes eruptions and shal-
low intrusions, presenting general expressions for forecasting the 
probability of an event happening within any user-defined time 
interval.

In some cases, pre-eruptive surface inflation proceeds at a 
constant rate (e.g., Chaussard et al., 2013; Delgado et al., 2014;
Champenois et al., 2014), whereas in other cases an exponentially 
decreasing rate of inflation has been measured such that tilt, ver-
tical and horizontal displacement, or volume of the inflation dome 
follows

�D = a
(
1 − exp(−t/τ )

)
, (1)

where �D is the change in the measured deformational quantity 
since the start of inflation at time t = 0, a is a constant equal to the 
value of �D that would be attained at time t = ∞, and τ is a char-
acteristic e-folding timescale (Dvorak and Okamura, 1987; Lu et al., 
2003; Lengliné et al., 2008; Dzurisin et al., 2009). This behaviour 
is readily explained by physics-based models of the growing over-
pressure within a replenished shallow magma chamber that is con-
tained in elastic country rock and fed at a rate determined by the 
pressure gradient along the feeding conduit (Lengliné et al., 2008;
Pinel et al., 2010). Inflation, being proportional to chamber over-
pressure, increases up to the point when a threshold over-pressure 
breaks open the chamber (Blake, 1981). Magma then escapes from 
the chamber, causing the ground surface to deflate, and a dyke 
propagates away from the chamber and may intercept the ground 
surface. The start of deflation is thus the time at which magma 
withdrawal starts and an intrusion is initiated, in some cases feed-
ing an eruption. Whether an intrusion actually breaks the surface 
(and how long after the start of deflation, and where the location 
of any eruptive vents is) is likely to depend on magma properties, 
rock properties, crustal stress and topography, as explored in the-
oretical models by Buck et al. (2006), Heimisson et al. (2015a) and 
Pinel et al. (2017).

According to Eq. (1), if deflation is triggered when the amount 
of deformation is �D∗ , then this happens at time t∗ which is pro-
portional to the exponential timescale (τ )

t∗ = −τ ln(1 − �D∗/a), (2)

This implies that if early monitoring data can constrain the value 
of τ , then a forecast of the time at which magma withdrawal 
starts, t∗ , can be made within the limits of variation in − ln(1 −
�D∗/a).

In Section 2, Eq. (1) is fitted to inflation periods at Krafla vol-
cano which preceded intrusions (as detected by seismic and de-
formational evidence) and, in some cases, eruptions. The results, 
together with published results from Kilauea and Mauna Loa, show 
that t∗ seems to be proportional to τ , with the ratio t∗/τ falling 
in a narrow range. In Sections 3 and 4 the statistical distribution 
of t∗/τ values is used to calculate the probability that deflation 
will start within any user-defined time interval. We also calculate 
the size of the time window in which the probability has a partic-
ular value, and show how forecasts can be continuously updated 
Fig. 1. Elevation above sea level of station FM5596 at Krafla (data from Björnsson 
and Eysteinsson, 1998) showing the 17 periods (represented with different colours 
for clarity) of gradual inflation followed by rapid deflation. Deflation events that 
were accompanied by an eruption are indicated with a red star. (For interpretation 
of the references to colour in this figure, the reader is referred to the web version 
of this article.)

on the basis of new monitoring data. Section 5 discusses how our 
method can be adapted to make the same type of forecasts us-
ing other types of pre-eruptive measurements that follow a given 
time-dependent function.

2. Ground inflation, deflation and eruptions at Krafla

The Krafla volcanic system is situated in Iceland’s Northern 
Volcanic Zone. It has a 12-km diameter caldera and a system of 
ground fissures and vents which extend beyond the caldera to 
the North and South. An active geothermal system lies within the 
caldera. In 1975–1984 a repeated sequence of activity occurred 
in which gradual ground inflation centred within the caldera was 
interrupted by rapid deflation accompanied by rifting and some-
times basaltic eruptions (e.g., Björnsson et al., 1979; Ewart et al., 
1990, 1991; Buck et al., 2006; Wright et al., 2012). Seismicity ac-
companying rifting has been interpreted to have resulted from 
dominantly lateral propagation of dykes carrying basaltic magma 
from a shallow magma chamber below the caldera. An S-wave 
shadow zone (Einarsson, 1978; Brandsdóttir and Menke, 1992;
Brandsdóttir et al., 1997) and modelling of ground deformation 
(e.g., Björnsson et al., 1979; Johnsen et al., 1980; Ewart et al., 
1990, 1991; Heimisson et al., 2015b) place the shallow chamber, 
or a complex of magma storage compartments, at about 2 to 4 km 
depth.

Here, we investigate the record of ground inflation using the 
data on surface elevation provided by Björnsson and Eysteinsson
(1998) (see Fig. 1) pertaining to levelling station FM5596 located 
about 1 km from the centre of deformation. Measurements were 
typically recorded on a daily to hourly basis. We designate as 
inflation period 1 the measured inflation which started in Febru-
ary 1976, following the end of the first eruptive event in the 
1975–1984 activity, because this marks the start of frequent mea-
surements of inflation. The elevation at which deflation started 
generally increased over time, rather than occurring at a more or 
less constant threshold elevation, as appears to be the case at Ax-
ial Seamount (Chadwick et al., 2012; Nooner and Chadwick, 2016). 
At Krafla, the threshold elevation is variable and is likely to be 
a function of time-dependent magmatic, tectonic and topographic 
stresses (Buck et al., 2006).

Of the 17 inflation periods which preceded deflation (Fig. 1), 
all but the two most recent periods (lasting from 04/02/1981 to 
18/11/1981 and from 22/11/1981 to 04/09/1984) are described 
well by the single exponential function of Eq. (1). These are the 15 
periods plotted in Fig. 2 and listed in Table 1. They lasted from tens 
of days to hundreds of days and inflation stopped (when deflation 
and eruption/intrusion started) after inflation of 0.2 to 1.2 m. Note 
that although elevation increases during each inflation period at 
a decreasing rate through time, some irregularity occurs because 
of occasional rapid but small deflations and inflations. These are 
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Table 1
Inflation periods considered in this study from Krafla, Mauna Loa and Kilauea volcanoes. Kilauea 1977–1979 and Mauna Loa parameters are from 
Lengliné et al. (2008). Puu O’o’ values are from Dvorak and Okamura (1987). *a values are given in [m] units except Puu O’o’ given in [μrad] 
units (“N/A” when the values were not reported).

Inflation Start date 
(dd-mm-yy)

Duration (t∗) 
[d]

τ
[d]

a
[]*

t∗/τ

Krafla 1 15-02-76 227.63 537.12 3.954 0.42
Krafla 2 04-10-76 26.83 23.34 0.234 1.15
Krafla 3 01-11-76 79.16 99.67 1.089 0.79
Krafla 4 21-01-77 95.89 77.79 0.827 1.23
Krafla 5 28-04-77 132.82 111.5 1.174 1.19
Krafla 6 14-09-77 114.79 79.23 0.893 1.45
Krafla 7 25-01-78 166.10 160 1.603 1.04
Krafla 8 12-07-78 120.79 139.2 1.193 0.87
Krafla 9 15-11-78 178.88 121.3 1.090 1.47
Krafla 10 18-05-79 258.58 85.06 0.840 3.04
Krafla 11 19-02-80 26.05 13.71 0.070 1.90
Krafla 12 17-03-80 115.33 51.25 0.635 2.25
Krafla 13 16-07-80 94.86 61.49 0.528 1.54
Krafla 14 23-10-80 60.98 41.9 2.561 1.46
Krafla 15 29-12-80 32.29 21.53 0.222 1.50
Mauna Loa 1975–1984 (Lengliné et al., 2008) 06-07-75 3184.31 2670 N/A 1.19
Kilauea 1977–1979 (Lengliné et al., 2008) 01-10-77 605.05 412.45 N/A 1.47
Kilauea between Puu O’o’ Episodes 3 and 4 (Dvorak and Okamura, 1987) 09-04-83 65.31 40 32* 1.63
Fig. 2. Change in elevation during inflation periods 1 to 15 at Krafla (see Table 1), 
plotted from data in Björnsson and Eysteinsson (1998). Time and elevation change 
are referenced to the first data point in each inflation period, which was within a 
few hours or at most days of the start of inflation, as identified by other means. 
Colours as in Fig. 1.

Fig. 3. Plot of elevation change since the start of Krafla inflation period 9 and, in 
red, the best fit to equation (1) found using the Levenberg–Marquardt algorithm. 
(For interpretation of the references to colour in this figure, the reader is referred 
to the web version of this article.)

treated as noise because they are much smaller than the 0.1 to 
1.05 m deflation events that accompany intrusions and eruptions. 
Fitting was done using the Levenberg-Marquardt algorithm (see 
Appendix A) and the best-fit parameter values are listed in Ta-
ble 1; the time constant τ ranges from 13.7 to 537 d. Fig. 3 shows 
a representative example of a fitted curve.

Inflations 16 and 17 followed a double exponential model 
which, as will be mentioned in the Discussion, we attribute to a 
viscoelastic response of the system after sufficiently long time (cf. 
Nooner and Chadwick, 2009). However, for the purposes of this 
paper, attention is focused on inflations described by Eq. (1).

3. Forecasting method

As already noted, Dvorak and Okamura (1987) and Lengliné et 
al. (2008) used Eq. (1) to describe some inflation episodes at Ki-
lauea and Mauna Loa volcanoes. Combining their best-fit values 
of τ with the new results from Krafla (Table 1), Fig. 4a compares 
the duration of inflation, t∗ , with the exponential timescale, τ , 
for these three basaltic volcanoes. A strong correlation exists such 
that for given τ , the time when deflation starts, t∗ , is likely to lie 
within a well-prescribed range. The correlation holds irrespective 
of whether the deflation was accompanied by an eruption or only 
an intrusion, as is expected if deflation is triggered at a critical 
threshold whereas an eruption requires an additional criterion re-
lated to dyke propagation dynamics, magma buoyancy and surface 
topography. The correlation between t∗ and τ in Fig. 4a also ap-
pears to be independent of which volcano is involved, albeit with 
the caveat that more data from Kilauea, Mauna Loa and other vol-
canoes would be interesting.

That the Hawaiian and Krafla data have similar t∗/τ ratios is 
not unexpected for the following reason: In physical terms, for a 
magma chamber inflating due to the inflow of buoyant magma 
from below (e.g., Pinel et al., 2010), the critical amount of in-
flation �D∗ is proportional to the critical over-pressure in the 
chamber (�P∗). The maximum permissible amount of inflation, 
a, is that which would be caused by an excess chamber pressure 
that balances the buoyancy of the magma in the feeder conduit 
given by g�ρL where g is the acceleration due to gravity, �ρ
is the density difference between the magma and country rock, 
and L is the length of the feeder conduit. In such a model, t∗/τ =
− ln(1 − �P∗/g�ρL) and a deflation will be triggered as long as 
�P∗/g�ρL < 1. Choosing reasonable values for these parameters 
(3 < �P∗ < 30 MPa, 100 < �ρ < 400 kg m−3 and 5 < L < 20 km) 
yields a spread of t∗/τ ratios that are confined within the range 
of about 0.07 to 5, which is consistent with Fig. 4. Although the 
ranges of physical parameter values, and hence t∗/τ ratios, within 
a given volcanic system are likely to be narrower, disparate vol-
canoes can still be expected to have t∗/τ values that overlap, as 
appears to be the case from Fig. 4. Thus, until more deformation 
data are available, the dispersion in the data represented by the 
pooled cumulative distribution function (cdf) in Fig. 4b is taken 
to describe the relationship between the duration (t∗) and time-
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Fig. 4. (a) Log–log plot of t∗ versus τ , the t∗/τ = 0.9852 and t∗/τ = 1.7648 blue lines define the envelope around the central 60% of the data as shown in panel (b). Filled 
symbols refer to inflation events that culminated in a shallow intrusion which fed an eruption, open symbols refer to inflation events that culminated in a non-eruptive 
intrusion. (b) Cumulative distribution function of t∗/τ with best-fit log-logistic distribution in red (Eq. (3)) and parameter values α = 1.318539 and β = 4.756239. Blue 
lines with t∗/τ = 0.9852, 1.31068 and 1.7648 represent 20%, 50% and 80% probability respectively. (For interpretation of the references to colour in this figure, the reader is 
referred to the web version of this article.)

Fig. 5. Relationships between the probability at elapsed time t , of deflation starting within the next �t , evaluated using equation (5) and the log-logistic model. (a) The 
probability, as a function of time t/τ , of deflation starting within the next �t/τ . (b) The time interval �t/τ within which there is a given probability of deflation starting, 
plotted as a function of time t/τ .
constant (τ ) of inflation at most volcanoes which behave according 
to Eq. (1).

The cumulative distribution function (cdf) of the ratio t∗/τ
(Fig. 4b) is sigmoidal, such that deflation is more likely to start 
when t∗/τ is near the median value. A smoothed version of the 
empirical cdf can be calculated using a best-fit to a theoretical 
distribution, such as a log-logistic distribution. We consider this 
distribution because it is adequate for events whose rate increases 
initially and decreases later as exponential decay. The distribution 
has a sigmoidal shape and a simple 2-parameter definition:

cdf log-logistic = 1

1 + (
(t∗/τ )

α )−β
, (3)

where α is the median value of t∗/τ and β is a shape factor. 
Values of α = 1.319 and β = 4.756 were found by maximum like-
lihood estimation to approximate the empirical cdf, with the good-
ness of fit being validated using the Kolmogorov–Smirnov test. The 
empirical cdf of t∗/τ as well as the log-logistic fit are shown in 
Fig. 4b.

The cdf of t∗/τ can be used to calculate the probability of a de-
flation starting within a given time interval by applying the theory 
of conditional probability and using an estimate of τ found by fit-
ting Eq. (1) to on-going inflation data. Thus, at some time, t , after 
the start of an inflation period the probability of deflation starting 
between t1 (≥ t) and t2 (> t1) is (see Appendix B)
p = CDF(t2/τ ) − CDF(t1/τ )

1 − CDF(t/τ )
. (4)

We focus on the probability, evaluated at the elapsed time t , of 
deflation starting in the time window between t and t + �t . In 
other words, at any current time during the course of on-going 
inflation, we wish to find the probability that a deflation event 
will start before a time period of length �t has passed. Following 
Eq. (4), this is:

p = CDF((t + �t)/τ ) − CDF(t/τ )

1 − CDF(t/τ )
. (5)

Graphs showing how this probability changes over time, and for 
different values of �t , are given in Fig. 5, where t and �t are 
normalised by τ and the cdf is given by the log-logistic model in 
Eq. (3) and Fig. 4b. Fig. 5a makes the obvious point that the prob-
ability increases with an increasing size of time window, �t/τ . 
For given �t/τ , the probability of deflation happening within that 
time window is initially low; this is because the cdf is relatively 
flat at small times, and increases as the steepest portion of the cdf 
is approached, which is when t/τ is close to the median value of 
t∗/τ . At later times, if deflation has not yet happened, the proba-
bility decreases once the long tail of the cdf is reached because a 
given size of time window contains a diminishingly small propor-
tion of the cdf.

Fig. 5(b) shows that the shortest time interval associated with 
a given probability is reached when t/τ is close to the median 
value of t∗/τ . This is where the cdf is steepest, such that a given 
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Fig. 6. Plot, akin to Fig. 4a but using linear axes and using data for Krafla inflation 
period 9, showing how τ (t) can vary over time and that t/τ (t) increases to values 
encountered at the start of deflation. 60% of deflation start when (τ (t∗), t∗) plots 
between the lines t/τ (t) = 0.9852 and 1.764 (i.e. cdf = 0.2 and 0.8, as in Fig. 4b).

proportion of t∗/τ values is contained within the shortest time 
span. The shortest time interval with a probability greater than 0.5 
is initially �t/τ = 1.32 (because this is the median value of t∗/τ ) 
and falls to �t/τ = 0.3 at t/τ = 1.5.

4. A retrospective illustration of probabilistic forecasting in real 
time

As shown above, the probabilities of deflation starting in a 
given time window can be calculated from the cdf as a function 
of the dimensionless time t/τ . To express the size of these time 
windows in absolute terms requires knowledge of τ , and this is 
estimated by fitting Eq. (1) to deformation data obtained up to 
time t (< t∗). This is designated as τ (t) to distinguish it from the 
values of τ (Table 1, Fig. 4) which are calculated based on all mea-
surements in an inflation period. The fitting method is described 
in Appendix A.

Using inflation period 9 (τ = 121 d, t∗ = 177 d) for illustration, 
irregularities in the elevation data cause the best fit values of τ (t) 
to vary during the course of inflation (Fig. 6) but inevitably the 
locus of (t , τ (t)) points moves towards the region of Fig. 4(a) oc-
cupied by (t∗ , τ ) values, and t∗/τ ratios, which characterise the 
start of deflations. The time evolution of forecasts will therefore 
reflect any change in τ (t) as well as the passage of time on the 
conditional probabilities.
In applying the forecasting method, a user may be interested 
in the probability of a deflation starting in a given time interval 
or, conversely, the time interval which carries a given probability. 
In the former case, continually updated conditional probabilities 
are calculated using Eq. (5) with τ replaced by τ (t) as shown in 
Fig. 7a for inflation 9. In the alternative case, Equations (3) and (5)
are rearranged to find �t for given p:

�t = τ (t)α

( p + ( 1
α

�t
τ (t) )

β

1 − p

)1/β

− t. (6)

The results from this calculation are shown in Fig. 7b.
Both plots in Fig. 7 show variation due to variation in τ (t) 

superimposed on the trends found in the normalised plots for con-
stant τ in Fig. 5. For example, the major changes at early times 
in Fig. 7a, b are mainly due to changes in the best fit value of 
τ (t) shown in Fig. 6. Once τ (t) becomes more stable, the trends 
in Fig. 7 more closely follow the theoretical curves of Fig. 5 in 
which the probability of a deflation in a given size of time win-
dow increases until t ≈ τ , and then gradually decreases. Likewise, 
the length of the time window associated with a given probability 
decreases until t ≈ τ and then slowly increases.

It may seem counter-intuitive that the probability does not con-
tinue to increase while more and more time goes by without a 
deflation event. However, there are two reasons why the probabil-
ity of deflation starting within a time window of given length (as 
opposed to deflation starting at any time which, in our model is 
p = 1) eventually decreases if a deflation event has not happened 
after a sufficiently long time.

The first is that the probabilities are calculated from a model 
distribution that by definition extends to infinite time. In other 
words, there is no known or assumed upper limit to how long 
inflation will continue. If there was a finite time by which defla-
tion must start, then the probability would indeed increase as that 
time was approached, but here there is no such constraint.

The probabilities depend on the shape of the cdf. In particular, 
the log-logistic distribution has a long tail in which the slope of 
the cdf decreases as the cdf asymptotes to 1 as time tends to in-
finity. This contrasts with the shape of the cdf at early times, which 
shows the slope of the cdf increasing. This shape reflects the fact 
that the distribution of t∗/τ values has a central peak straddled 
by shallow tails, as illustrated by the clustering of data points in 
Fig. 4a.

Secondly, then, the proportion of the population of all deflation 
start times contained within a time window that lies in the long 
tail of the distribution is small and becomes smaller as t tends to 
Fig. 7. Forecasts for Krafla inflation period 9 in terms of the relationships between the probability, at elapsed time t , of deflation starting within the next �t , evaluated using 
Eq. (5) and the log-logistic model. (a) The probability of deflation starting in the next period �t , as a function of time t . Different colours indicate deflation starting within 
the next 10 (black), 20 (red), 30 (blue), 50 (green) or 100 (magenta) d. (b) The time interval �t , as a function of time, associated with a 20% (green), 40% (blue), 60% (red) 
and 80% (black) probability of deflation starting, calculated using Eq. (6). (For interpretation of the colours in this figure, the reader is referred to the web version of this 
article.)
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Fig. 8. Comparison of the cdfs of t∗ (blue) and t∗/τ (red) for inflation periods 1 
to 15 of Krafla, plotted by normalising to the maximum value in each case. (For 
interpretation of the colours in this figure, the reader is referred to the web version 
of this article.)

infinity and the cdf asymptotes to 1. This is the opposite of the 
trend at earlier times, when the proportion increases according to 
the steepening of the cdf.

The probability (Eq. (5)) depends on the ratio of the propor-
tion of the population of all deflation start times that lies between 
t and �t , divided by the proportion of the population that lies 
beyond the present time. These proportions are (cdf(t/τ +�t/τ ) – 
cdf(t/τ )) and (1 – cdf(t/τ )) respectively. The former term increases 
as the cdf curve steepens (up to the median time) and decreases 
as the cdf curve flattens out (after the median time). The latter 
term always decreases with time. Consequently, at early times the 
probability increases and at later times decreases.

Fig. 7 also illustrates how the method can be used. After 30 d 
of inflation, there is a 40% chance of deflation starting in the next 
50 d (i.e., before the 80th d after this inflation period started) and 
only a 2% chance that it starts in the next 10 d. As time passes 
without deflation and with the gathering of more deformation data 
that allows τ (t) to be re-calculated with more data, the probabil-
ities associated with given time windows are continually updated. 
After 130 d, there is a 68% chance of deflation happening in the 
next 50 d, and a 20% chance of deflation in the next 10 d.

Alternatively, specifying an 80% probability of deflation start-
ing, the model forecasts a time window that decreases from about 
100 d to 70 d as inflation continues to the 130th d. Thereafter, 
the length of the time window increases once t >> τ as a con-
sequence of the cdf of t∗/τ flattening, as explained in Section 3. 
A trade-off between high probabilities being associated with long 
time windows and a desire to anticipate a deflation event within 
a short time window but with high probability is met when the 
times and time windows are of order τ× the median value of the 
t∗/τ ratio, in this case 1.32τ . In other words, the strongest fore-
casts are made around the times when the curves in Figs. 5a and 
7a reach high values and when the curves in Figs. 5b and 7b reach 
low values.

5. Discussion

This section compares the model with other approaches and 
explains how it can be used with data which follow a differ-
ent time-dependence from the decaying exponential of Eq. (1). 
First, we remark on a caveat that applies to all eruption fore-
casting methods which is that geophysical unrest need not lead 
inevitably to an eruption (Moran et al., 2011), because the priming 
mechanism may cease before a given critical threshold is reached. 
A survey by Biggs et al. (2014) found that of the 54 volcanoes 
which showed surface deformation detected by InSAR in the pre-
vious 18 yr, 25 erupted whereas 29 did not erupt. Of their 34 
studied volcanoes which did erupt, 9 did so without accompany-
ing deformation. The reasons for these varied behaviours probably 
relate to tectonic setting and the depth of magma bodies (Biggs et 
al., 2014) and the detectability of the surface expression of sub-
surface volume or mass changes within complex magma plumbing 
systems of varying size and location (Biggs and Pritchard, 2017;
Sparks and Cashman, 2017).

The forecasting approach introduced here can be compared 
with one based only on the distribution of inflation durations (t∗). 
Fig. 8 compares the empirical cdfs of t∗ and of t∗/τ for the 15 
inflation periods of Krafla. It shows that the t∗/τ cdf has a nar-
rower central portion, indicating that including the extra informa-
tion provided by a value of τ allows better discrimination of when 
deflation is likely to start. Indeed, the cdf of t∗ values is close to a 
straight line, such that t∗ values between the minimum and max-
imum values are equally likely whereas the sigmoidal log-logistic 
cdf of t∗/τ implies that t∗/τ will be more likely to lie in a nar-
rower range. A further advantage of the new model is that the 
distribution of normalised inflation times, t∗/τ , appears to be gen-
eral whereas the distribution of t∗ values is volcano-specific.

We reiterate that our method forecasts the onset of deflation 
whether or not the subsequent intrusion produces an eruption. At 
Krafla, the 15 inflation periods which followed Eq. (1) all culmi-
nated in an intrusion but only 6 of them produced an eruption. 
While separate cdfs for inflation episodes which preceded eruptive 
and non-eruptive deflations could be made in order to allow sep-
arate forecasts of the probabilities of the timing of eruptive and 
non-eruptive deflations (on the assumption that eruptions happen 
randomly in any sequence of deflation events), the small amount 
of available data precludes this. However, the empirical evidence 
of Fig. 4a is that eruptive and non-eruptive deflations are not asso-
ciated with different populations of t∗/τ values. This is consistent 
with the expectation that the condition for an eruption to happen 
at some time during deflation is independent of the condition for 
deflation to start.

The t∗/τ method introduced here applies only to inflations 
which follow Eq. (1), in other words, volcanoes with inflation at 
an exponentially decreasing rate. The procedure of updating fits 
to Eq. (1) as more monitoring data are collected allows the user 
to continually judge whether Eq. (1) adequately fits the data. If it 
does, then the forecasting method using Eqs. (4) and (5) and the 
cdf shown in Fig. 4b remain valid. However, if Eq. (1) becomes 
inadequate, then the forecasting method should be modified. In-
flation histories that are described by equations other than Eq. (1)
(Nooner and Chadwick, 2009; Reverso et al., 2014; Le Mével et al., 
2015, 2016; Carrier et al., 2015) may reflect additional processes or 
boundary conditions but can in principle be treated using Eqs. (4)
and (5) if an appropriate scaling of the eruption time (t∗) can be 
found and the cdf of the scaled eruption time can be defined.

For example, inflation episodes 16 (from 04/02/1981 to
18/11/1981, t∗ = 286 d) and 17 (from 22/11/1981 to 04/09/1984, 
t∗ = 1018 d) at Krafla show systematic departures from the single 
exponential model of Eq. (1). Fig. 9a,b shows that they are more 
clearly described by the double exponential model

�D = a1
(
1 − exp(−t/τ1)

) + a2
(
1 − exp(−t/τ2)

)
, (7)

which Nooner and Chadwick (2009) used to describe inflation of 
Axial Seamount between its eruptions in 1998 and 2011. The sec-
ond exponential term only becomes necessary after long times 
and may arise when the system starts to respond in a viscoelastic 
way. As with the single exponential model, given sufficient data, 
it would be possible to define a cdf of t∗/τ2 (where τ2 > τ1) and 
then use it in the forecast model of Eq. (4).

In general, the approach based on Eq. (4) can be applied in 
any situation where a physical measure, Q , of pre-eruptive un-
rest (e.g., ground elevation, tilt, earthquake rate) is monitored and 
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Fig. 9. Inflation 16 and 17 of Krafla volcano, showing single exponential fits (Eq. (1), red lines) and double exponential fit (Eq. (7), blue lines). (a) Inflation 16, with best fit 
parameters a = 0.452 m and τ = 71.32 d with a single exponential fit and a1 = 0.2347 m, τ1 = 23.5323 d, a2 = 1.7458 m, τ2 = 1822.9611 d with a double exponential fit. 
(b) Inflation 17, with best fit parameters a = 0.699 m and τ = 114.426 d for a single exponential fit, and a1 = 0.3661 m, τ1 = 20.7144 d , a2 = 0.5561 m, τ2 = 613.736 d
with a double exponential fit. (For interpretation of the colours in this figure, the reader is referred to the web version of this article.)
obeys a time-dependent function f (t/T ), where T is a constant 
normalising time-scale whose value can be estimated by fitting 
Q = f (t/T ) to monitoring data. The function f can be empiri-
cal or be based on a physics-based model, such as pressurisation 
of an elastic magma chamber (as in Eq. (1)) or inelastic deforma-
tion (wherein the inverse of the rate of elevation change decreases 
linearly with time ( f ∝ (1 − t/T ); Robertson and Kilburn, 2016). 
Given a number of past eruptions happening at known t∗ and T , 
then the cdf of t∗/T can be plotted and described by the best fit 
to an appropriate reference distribution (e.g., log-logistic, Weibull, 
normal etc). The best-fit cdf then defines the population of t∗/T
values at which eruptions begin. The probability of an eruption 
starting within any user-defined time window, given that some 
amount of time t has already passed, can then be calculated by 
applying Eq. (4), the value of T having been found through fitting 
Q = f (t/T ). The value of T and the probability can be continually 
updated in real-time as monitoring data accrues.

6. Conclusions

Motivated by the need for improved quantitative probabilistic 
forecasting methods for volcanic eruptions, we introduce a method 
which produces forecasts of the type “The probability that a de-
flation will start during the next N days is p”. The method re-
quires monitoring data and a statistical description of the threshold 
conditions for an eruption (or other event) to start. In our case, 
the time at which an inflating volcano starts to deflate, a pro-
cess which initiates a shallow intrusion that sometimes leads to 
an eruption, is parameterised by an exponential timescale (τ ) de-
scribing the time-dependence of inflation rate. In particular, we 
have shown that Eq. (1) describes inflation episodes at Krafla vol-
cano which are followed by deflation, intrusion and in some cases, 
eruption. Certain inflation episodes at Kilauea and Mauna Loa also 
follow Eq. (1) (Dvorak and Okamura, 1987; Lengliné et al., 2008). 
The pooled data show that the duration of inflation t∗ is propor-
tional to the exponential timescale τ , and the ratio t∗/τ follows 
a log-logistic distribution with median of ca. 1.3 and 20% and 80% 
percentile values of ca. 0.99 and ca. 1.78. The cdf of t∗/τ allows 
the probability that deflation will start within a given user-defined 
time window to be calculated (Eqs. (4) and (5) and Figs. 5 and 7). 
Probabilities can be continually updated in real-time as more de-
formation data become available during an ongoing inflation pe-
riod because this allows the value of τ to be continually refined. 
The method performs better than forecasts based solely on the 
statistics of t∗ values. The methodology is transferable to any time-
dependent pre-eruptive monitoring data for which the cdf of the 
duration of unrest (t∗) scaled by a time-scale, T , is known and for 
which a value of T can be determined from on-going monitoring 
data.
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Appendix A. Parameter estimation

Estimation of the parameters a and τ is performed using the 
Levenberg–Marquardt (Levenberg, 1944; Marquardt, 1963) non-
linear least-squared regression on the inflation data at a given 
time and inflation ti and �hi . The algorithm is an iterative method 
based on finding the vector of parameters β = (a, τ ) that minimise
the sum of the squares of deviation S(β) from the model curve 
f (t, β):

S(β) =
m∑

i=1

[
�hi − f (ti − β)

]2
(A.1)

Starting with an initial guess of β = (a0, τ0), the values are up-
dated on iteration steps by replacing β by a new estimate β + δ

in which δ is calculated from the set of linear equations result-
ing from the minimisation of a relaxed version of the Jacobian of 
f (t, β). In general, if n parameters are unknown, the method re-
quires at least n + 1 data points to converge, e.g. in theory at least 
three data points are required to solve for the two parameters a
and τ . In practical terms, the iterative process requires many more 
data points to find a meaningful solution, i.e. with values of a and 
τ lying within realistic windows, as the algorithm finds local min-
ima values and those can be spurious. We therefore apply cut-off 
criteria based on the following arguments:

First, as we want to examine an exponential model rather than 
a linear one, t/τ (t) shouldn’t be too small (i.e. not << 1). Second, 
as very large values of t/τ (t) in Eq. (1) imply that inflation will 
cease after a very short time we regard any τ (t) values such that 
t/τ (t) > 10 as unrealistic. We therefore only accept τ (t) values if 
0.1 ≤ t/τ (t) ≤ 10.
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Appendix B. Conditional probability

Calculating the probability of deflation starting (at time t∗) 
within some specified time interval, given that an amount of time 
t < t∗ has passed is a particular case of calculating the conditional 
probability of the occurrence of an event A given that an event B
has already happened: P (A|B). It is well known that:

P (A | B) = P (A ∩ B)

P (B)
(B.1)

i.e. this conditional probability is equal to the probability of the 
combined event divided by the probability of the event that has 
happened. In our case, defining the probability of deflation at a 
given time t∗ after a given amount of time t has occurred implies 
that A = t ≤ t∗ ≤ t + �t and B = t∗ > t . Because A ∩ B = t < t∗ ≤
t + �t (i.e. the probability of the combined event is equal to the 
probability of the eruption happening after t) and P (t∗ > t) is the 
definition of the survivor function, Eq. (B.1) can be rewritten as:

P
(
t ≤ t∗ ≤ t + �t | t∗ > t

) = P (t < t∗ < t + �t)

1 − P (t)
(B.2)

To calculate these probabilities, we first estimate the cumula-
tive distribution function of t∗/τ , based on the values of t∗/τ of 
previous inflations to assess the conditional probability as:

P
(
t ≤ t∗ ≤ t + �t | t∗ > t

) = CDF( t+�t
τ ) − CDF( t

τ )

1 − CDF( t
τ )

(B.3)
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