
Geophysical gravity

1 Earth’s orbit in the Solar System

The concept of Gravity was introduced to science by Sir Isaac Newton in his Philosophiae
Naturalis Principia Mathematica in 1687. He recognized that he could explain the
periodic orbits of the then-known planets about the Sun by intoducing a very sim-
ple concept: the planets are attracted toward the Sun by a gravitational force that
is inversely proportional to the square of their momentary distance from the Sun.
Newton’s Law of Gravitation can be stated in simple mathematical form:

~Fgravity = G
m1 · m2

|~r|3
· ~r

where ~r is the vector displacement of one mass, taken to be at the coordinate origin,
to the other. Newton recognized that it was gravity that provided the force required
to accelerate each planet along its elliptical orbit.

Let us assign m1 = M� to the coordinate origin centred on our Sun. The force
acting on an orbiting planet, mass m2 = mp, is simply

mp

d2~r

dt2

which balances the gravitational attraction of the Sun so that

d2~r

dt2
= −G

M�
|~r|3

~r.

While it might not be immediately clear to you, this is a non-linear differential
equation that describes the evolution of the orbital position of the planet in time.
Non-linear differential equations are not easy to solve by straight-forward analytic
manipulations but given initial conditions, we can quite easily model the incrementing
position using computers. Digital computers, however, cannot sufficiently resolve the
position (due to short numerical word length and round-off error) to obtain an exact
solution. Errors accumulate in the recursions.
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Figure 1 The Sun, sitting at one focus of the ellipse of the orbit provides
the gravitational attraction, the centripetal force, to hold the planet
into its orbit. Without this gravity-provided centripetal force (green
vector), the planet would escape, moving with constant velocity, along
its orbital tangent (red vector). Note that the other focus is empty.

The velocity of the planet normal to the vector direction of the cen-
tripetal force is indicated in black. You might recognize that if the
orbit were circular (both foci assembled at the circle’s centre), the
normal (black) and tangental (red) velocities would be identical.

While the classical mechanics of stable elliptical orbits1 is quite complicated, if the
orbit is circular, it is not. For a circular orbit, vr = 0, vt = vn and the planet is
always in the same gravitational potential field of the Sun. For elliptical orbits, we
have to take into account and balance the accelerations due to the planet’s varying
distance from the Sun as well as just providing the necessary centripetal acceleration.
Let us look at a circular orbit where M� is the mass of the Sun and mp is the
mass of a planet moving in a circular orbit at radial distance |~r| from the Sun (taken
as coordinate origin) with tangential velocity vt. If this orbit is to be stable, the
centripetal force,

~Fcent = −
mp|~vt|2~r

|~r|2

required to maintain the circular orbit is just that provided by gravity

~Fgravity = −G
M�mp

|~r|3
~r.

1 Prof. Walter Lewin’s lecture on elliptical orbits in his MIT Classical Mechanics course
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One might note, then, that for this stable circular orbit, the planet’s speed (magnitude
of its tangential velocity) depends on the central mass of the Sun, M�, and its
distance from the Sun, |~r|, and the strength of the gravitational force as measured
by the Cavendish constant, G = 6.67 × 10−11 m3 · kg−1 · s−2 :

|~vt| =

√
G M�

|~r|
.

If one knows the radius of a planet’s orbit and its period (so as to determine its
tangential speed in orbit), one can determine the central mass that provides the cen-
tripetal acceleration required to hold it in orbit. M� = 1.989×1030 kg. Using just
this knowledge and by measuring the tangential speeds of stars in orbit about galax-
ies, Vera Rubin2 in 1973 obtained the first observational evidence of “dark matter”.
Current astrophysical theories of cosmology determine that dark matter comprises
about 27% of all the “stuff” of the Universe. Ordinary matter and electromagnetic
energy equivalents accounts for somewhat less than 5% of the mass and the mass
equivalent of mysterious “dark energy” for 68%.

1.0.1 More on the Earth’s orbit

Presently, the Earth’s orbit is nearly circular with an eccentricity,

e =

√
1 −

b2

a2
= 0.017

where b is the narrow diameter of the ellipse and a, the broad diameter. The eccen-
tricity varies over a period of 413 000 years from an almost perfectly circular orbit,
e = 0.005, to one with a noticable elliptical form, e = 0.058. The mean eccentric-
ity is e = 0.028. Moreover the long axis of the ellipse precesses, apsidal precession,
about the Sun with a period of about 112 000 years.

The Earth’s orbital plane defines the reference ecliptic plane of the Solar System.
Relative to the invariable plane, that which is normal to the angular momentum
vector of the Solar System, the ecliptic plane oscillates with a period of about 100 000
years. It might not surprise you that on long times scales, all of these orbital motions
might well affect the Earth’s climate. These cyclical effects on climate, along with
several others, were assembled by Milutin Milankovic in the early 1900s to form what
is now accepted as the Milankovic theory3 of natural climatological variation.

2 Vera Rubin discovers “dark matter”
Most of our Universe is Missing – a BBC Horizon video

3 Milankovic theory
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1.1 Earth’s Moon

Earth’s Moon orbits the Earth in 1 month. What is the length of that month?
There are many measures of the month depending upon the perspective one takes
in determining the period of orbit. The best measure of the orbital period of the
Moon for purposes of determining the mass of the Earth about which it orbits is
measured in reference to the “fixed stars”: 1 tropical month. Properly, this orbital
period is that about the centre of mass of the Earth-Moon system and not about
Earth’s own centre of mass. For elliptical orbits such as that of the Moon about
Earth, the appropriate |~r| in the equation above is the “length of the semimajor axis
of the orbital ellipse”. This is just half the longest diameter through the ellipse. A
fully classical mechanical derivation of the the description above would take us to
this conclusion. That’s too involved for here and too much for me. The length of the
tropical month is 27.321582241 days of 86400 seconds. Until the advent of atomic
clocks, this orbital period offered the most precise measure of time. The semimajor
axis of the lunar orbit, measured from the Earth-Moon system’s centre of mass is
384748 km. The centre of mass of the Earth-Moon system is displaced along a line
from the Earth’s centre of mass toward the Moon at perigee (Moon closest to Earth
during its elliptical orbit.) by 4428 km and at apogee (Moon farthest from Earth)
by 4943 km. Both the Moon and Earth are in elliptical orbits about this centre
of mass. The Earth’s orbit is entirely within the body of the Earth whose radius is
about 6371 km.

The Moon’s orbital eccentricity, presently e = 0.055, the inclination of its orbit
relative to the ecliptic plane i = 5.15◦, the tilt of its rotational axis relative to its
orbital axis, 6.69◦, and the inclination of Earth’s rotational axis, 23.5◦, conspire to
give us varying views of the near-side face of the Moon: Lunar libration. On long
time scales, all of these factors vary cyclically.

An exercise (not for grading): I have given you, here, enough theory and data to
obtain quite accurate measures of the masses of Earth and Moon. Try to do it!

It is interesting to note that the tropical month is getting longer by 0.000000001506
days (1.301184×10−4 seconds) every year. We shall come to this story later in this
section.

Knowing the orbital period of the Moon, the displacement of the Earth-Moon system’s
centre of mass from the Earth’s centre, we can determine the mass of the Earth and
the Moon. It is by these means that we have determined the masses of all the planets
of the Solar System and of those satellites of planets that probes have encountered.
Neither Mercury nor Venus has an orbiting natural satellite, so it wasn’t until we had
probes pass by these planets that we had accurate measures of their masses. Until
we could resolve the 3 major satellites of Pluto and their orbital periods, we had
seriously overestimated the size and mass of Pluto. Pluto is smaller and much less
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massive than Earth’s Moon and many of the satellites or moons of the larger planets.

1.2 Lunar tides

The 1/r2 nature of gravitational forces has important implication for the momentary
shape of bodies like Earth and Moon. From an Earth perspective, the differential
gravity across the diameter of the Earth due to the 1/r2 nature of the gravitational
attraction of our Moon lifts and depresses tides across the body of the Earth. That
hemisphere of the Earth closest to the Moon is lifted toward the Moon and that
opposite the Moon is relaxed relative to the centre of mass of the Earth-Moon system.
The gravitational force gradient across the diameter of the Earth amounts to about
3.695 × 10−7 m · s−2 or to about 3.77 × 10−8 of the gravitational attraction of a
mass on the surface toward the Earth’s centre. 3.77 parts in 108 may seem like a very
small anomaly in acceleration but the Earth as it spins under the Moon is constantly
and locally adjusting to the varying attraction of its internal and surface materials
toward the Earth’s centre of mass. That side of the Earth closest to the Moon faces
a gravity reduction of about 1.8 parts in 108 compared to the Earth’s centre of mass
while the opposite side faces a gravity reduction as well. That is, the side closest to
the Moon is being pulled toward the Moon; the side opposite the Moon is relaxed
away from the Moon. These are the Earth tides or body tides of the Earth. There
are a multiple infinity of body tidal periods; in our own gravimetry work, we used a
theoretical tidal model that predicted the 3500 periods with largest amplitudes.

If the Earth were perfectly elastic, it would adjust immediately (actually with the
speed of sound within its materials) to these variations in gravity. The Earth, though,
is somewhat plastic in rheology and so the adjustment lags the gravitational pertur-
bation along the Earth-Moon line by about 12 minutes.
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Figure 2 The Moon orbits the Earth in the same sense as Earth rotates
on its axis. Earth, however, is rotating very much faster than the
Moon’s orbital angular velocity. The tidal bulges pulled up on the
near-Moon side of the Earth and relaxed from the far-Moon side take
some time to be established as the Earth materials deform and some
time to relax. This leads to an about 12 minute delay of the tidal
bulge from the Earth-Moon line.

As the Earth rotates in same general sense that the Moon orbits about the Earth
and with a much higher angular velocity, this means that the high tide bulge raised
by the Moon has spun forward along the Earth-Moon line. The raised tidal bulge is
attracted toward the Moon and so exacts a retarding torque on the spinning Earth.
The Earth is slowed in its rotation speed. The angular momentum lost from the
rotating Earth is taken up by the Moon as a consequence of inviolable Conservation
of Momentum. The Moon wins angular momentum.

There is another effect, as well, that transfers angular momentum from the spinning
Earth to the Moon as a consequence of the tidal forces. On the mobile materials of
the Earth, essentially the fluid oceans and atmosphere, the tides raised cause flows
of the fluids. The fluids flow but not without a loss of energy in their flowing. Tides
affecting the coasts cause mechanical erosion and the movement of grains of sand and
rocks back and forth due to the repetitive tidal surgings. Their motions are resisted
by friction transferring energy from the mechanical motions of the tides into heat and
mechanical damage of the grains and rocks. Mechanical energy is lost in the Earth-
Moon system having been degraded into heat and mechanical damage. As it turns
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out, this mechanical energy loss also contributes to a slowing of the rotation of the
Earth. While energy is only conserved in the transferrance of form from mechanical
to other forms in this case, momentum is necessarily conserved only in the motions.
The Earth slows in its rotation and the Moon gains angular momentum.

The angular momentum, ~L, of a point mass, m, moving in a circular path at radius
r from the center of revolution is obtained as

~L = m · r2 · ~ω

where ~ω is the angular velocity of the motion.

|~ω| =
2π

T

where T is the period of one rotation.

An exercise (not for grading): Above, I noted by how much the lunar orbital
period increases each year. That means that ~ω is decreasing year by year for the
Moon’s orbit. The Moon, though is also retreating from Earth as a consequence
of the transferrance of angular momentum from the Earth to the Moon. Over the
past 40 years, this retreat has been measured to be about 3.85 cm/y. Calculate the
annual increase in angular momentum of the Moon’s orbit. The consequence is that
the Earth is losing just this amount of angular momentum annually and so its rotation
slows. The moment of inertia of Earth referenced to its rotation axis is known to be
Iz = 0.3308m

Earth
r2

Earth

4. The angular momentum of the Earth is Lz = Iz · ωz.
What is the increase in the length of a day (i.e. 1 rotation of the Earth) in one year
that corresponds to the angular momentum transfer to the retreating Moon?

The differential gravity across the body of the Earth due to the Sun’s attraction also
provides a tide with an average 24-hour cycle. The amplitude of the solar tide is
about 1/2 the amplitude of the lunar tide. The tides add together, beating one with
the other, to produce a complicated cycle that is only truly periodic over very long
time scales.

1.3 Earth rotation: wobbles, nutation, precession

The axis of rotation of the Earth is nearly space fixed and aligned with the geograph-
ical coordinate system so that ±90o approximately coincides with the rotation axis.
Actually, the Earth’s rotation is a very complex subject. There are hundreds of effects
that disturb this simple model of rotation.

4 Properly, because the Earth is not exactly rotationally symmetrical, the moment of intertia is
only properly and fully expressed as a tensor quantity. Here, Iz is the Izz element of the moment
of inertia tensor; under rotational symmetry, Ixx = Iyy, the remaining 6 elements of the tensor I
being zero.
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The geographical coordinate system was “inscribed” on the body of the Earth so as
to align in this manner with the rotation axis position averaged during the period
January 0, 1900 to December 32, 1905. The average length of day during that period
was assigned to be 86400 seconds, so defining the duration of the second. As the
Earth’s rotation is slowing down (See previous subsection.), the length of day is
increasing. Adjustments are made by adding a leap second to the year every 1 to 5
years as needed in order to bring the noon of atomic-based time in coincidence with
the solar noon.

The IERS, International Earth Rotation (and Reference Systems) Service5 obtains
accurate measurements of the Earth’s rotation period and publishes them on various
intervals, typically, averaged over a period of 5 days. In Figure 3, you see a record of
their observations and adjustments to the atomic clock time in coordinating it with
the Earth’s rotation time so that solar noon is never more than 1 second in variance
from the UTC, Universal Coordinated Time, the standard time that we use both
civilly and geophysically.

In 1972, it was decided that rather than continually adjusting our clocks, the leap
seconds would be added when necessary during the moment between June 30 and
July 1 or December 31 and January 1 each year.

5 IERS
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Figure 3: The diagram shows the variance between the time scale coor-
dinated with Earth’s rotation (UTC) and that determined by a large
suite of atomic time standards distributed in laboratories aroung the
world (TAI). This record begins in 1962 and continues through Decem-
ber 31, 2014. Note UTC is “mean solar time” which has taken into
account the Earth’s orbital eccentricity. Actual sundial noon does not
correspond to the accumulation of a sequence of days of 86400 sec-
onds; it depends, as well, on Earth’s position during its orbital year6.

Observatoire de Paris – Earth Rotation Service
Excess length of day

The Earth is a dynamic body with continuing redistributions of mass within its in-
terior and across its surface. Redistributions of mass cause changes in the Earth’s

6 The story of the analemma
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Inertia Tensor. As angular momentum is conserved in the Earth’s rotation apart
from the rotational-slowing effect described previously any changes in the Inertial
Tensor caused by mass redistributions produce changes in the rotation vector, both
in magnitude and direction. Moreover, any spinning body that is not perfectly spher-
ically symmetric throughout can be disturbed into a free wobble. This wobble is like
that that you may have seen as a child when playing with a spinning top or dradle.
Tap the spinning top and it begins to wobble. So does the Earth whenever it’s Inertia
Tensor or its rotation direction is changed. For example, if it were hit by an asteroid,
both its Inertia Tensor due to the addition of mass at a point on the surface and
its rotation direction due to the assymmetrical push on the surface would change
immediately. The Earth’s free wobble is called the Chandler wobble7; it’s period is
about 438 days.

The Earth is also affected by forced periodic changes in its Inertia Tensor. On an
annual cycle, seasonal meteorology moves mass about the planet. Ice and snow accu-
mulates in the high latitude winter and melts away in its summer. Wind directions
and strengths change the surface atmospheric forcing on the body of the Earth. These
effects cause the Earth to wobble with an annual wobble with a 365.25-day period.
This forced nutation beats with the Chandler wobble (a damped free nutuation with
a period of ∼ 438 days) to produce a modulated cyclical motion of the Pole Path.
Since the 1900-05 definition of the geographical latitude-longitude coordinate system,
Earth’s geographical north pole has moved almost 12 m from the present rotation
axis!

The rotation pole path and and rotation period has been monitored for over a century.
The ILS, International Polar Motion Service, was established in 1899 to measure the
effective change of latitude with time as measured by six observatories distributed
around the Earth at 39◦08′ N in order to compute the evolving rotation pole position.
This service was updated in the 1960s as new and more accurate geodetic technologies
became available, especially VLBI, Very Long Baseline Radio Interferometry. Now
the IERS, International Earth Rotation Service, coordinates measurements made by
all available techniques to produce a pole position averaged over a 5-day period every
5 days.

7 An excellent article on the subject by D.E. Smylie
Current orientation parameters IERS
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Figure 4: The diagram shows the rotation pole path measured in geo-
graphical coordinates starting in January, 2015 and through August,
2016. 1 mas (milli-arc-second) represents about 3.09 cm Note that,
on July 31, 2016, the rotation pole position was about 15.5 m south
of the CIO (Conventional International Origin) along a longitude line
64◦ W. The approximate center of this pole path is oriented 78◦ W.
Pole-path data from EOC-Paris Observatory
Current-recent position
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Figure 5: The diagram shows the rotation pole path measured in ge-
ographical coordinates starting in January, 1900 and through to De-
cember 31, 2009 with temporal increment of 0.05 yr. The CIO (Con-
ventional International Origin) is shown as the red centred dot and
the pole position as of December 31, 2009 is shown by the green dot.
You might note that the recent centres of the “circles” of motion have
drifted about 10m south of the CIO along a longitude line about
80◦ W during these 110 years.

Data for plot from EOC-Paris Observatory

In Figure 5, we note that the measurement errors (as evidenced by the recently smooth
track) have been incredibly reduced by the new technologies. Presently, standard
errors in VLBI measurements, those most heavily weighted in the pole-position 5-day
measurement, have not exceeded about 3mm since 1990, actually less than the width
of the line in the diagram. In the early 1900s, errors of several metres colour the data.

From these measurements, we can obtain the periods of the cyclical motion due to
the Chandler Wobble (i.e., the Earth’s free Eulerian wobble) and another which is
driven by annual meteorological forcing. The spectrum of polar motion cycles is rich
in many other geophysical effects.
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Figure 6: The diagram shows a high-resolution “maximum-entropy”
power spectrum of the rotation path for the years 1990-2009. Note
the rotation direction of the path is largely described by a negative
frequency (representing clockwise motion in the coordinate system of
the measurements), here measured in cycles/per year. The highest
peak is that of the Chandler Wobble whose period is found to be
about 438 days; that peak just left of the Chandler represents the
residual (following our corrections – see below) forced annual wobble.

Data used in this plot from IERS

In order to produce this spectrum from the pole-path data set, many corrections
based on good theory and past experience were necessarily applied. A low-frequency
background drift was removed, then a “best-fitted” model of the annual component
of the pole path which, in this case, left us with a residual time series that retained
the Chandler free wobble and some other lower amplitude wobbles and nutations. It
is this Chandler wobble that might be excited by earthquakes, asteroid impacts and
other geophysical effects. The annual component does dominate the pole path record
but is, in principle, less than a factor of 2 greater in amplitude. We remove it as best
we can in order to see through to the Chandler component.

1.4 Precession

As well as the body of the Earth moving across the rotation axis of the Earth, the
rotation axis itself moves relative to the inertial system of the “fixed stars”. Prop-
erly, the inertial reference system is determined by the positions of the most distant
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quasars on the Celestial Sphere. These are tied to the various geographical reference
systems for the Earth through “very long baseline radio interferometry” (VLBI) in-
volving many of the largest radiotelescopes on Earth. Even before this extremely
high accuracy measurement technique, the path of the rotation axis of the Earth
was recognized and monitored as the apparent movement of the “pole star”, Polaris.
Presently, Polaris that bright star most closely aligned with Earth’s rotation axis; in
about 13000 years, the rotation axis will have moved to become almost coincident
with the bright star Vega.

The Precession of the rotation axis is driven by torques applied to the rotating Earth
due to differential gravitational forces imposed by the Moon on Earth’s equatorial
bulge.
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Figure 7: The difference of the gravitational attractive forces toward
the Moon acting on the equatorial bulge on the near-Moon side of
the Earth and far-Moon side produce a torque on the rotating Earth.
The Earth’s reaction to the torque produces a continuous, 25772-year
precession of Earth’s rotation axis.

1.5 Shape of the Earth and surface gravity

If the Earth were isolated, homogeneous, at least layer by layer, non-rotating and in
equilibrium, it would be pulled into a perfectly spherical shape through gravity. It
is in fact almost spherical but it is rotating once every 86164.092 seconds relative
to the inertial system of the fixed stars. This is one “siderial day”. One “solar day”
corresponds to 86400 seconds because, each day, the Earth has to spin just 1/365.25
of one full rotation just to return to the same perspective toward the Sun – that is,
from one noon to the next. The Earth rotates 366.25 times during one year of 365.25
solar days. The stars are so far away that our perspective on the stars doesn’t much
change during a whole year. Actually, for the nearby stars, it does change just a little
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and we can use this fact to determine the distance to nearby stars but that’s not the
topic of this course nor of this subsection of this note.

If the Earth were non-rotating, perfectly spherical and with polar radius r = rp,
the gravitational acceleration everywhere on the surface would be determined by
Newton’s law of gravitation:

~gN = −
G M♁
|~r|3

~r.

This is essentially the gravitational attraction at the Earth’s poles at “sea level”.
However, as the Earth is rotating, and as we move from the poles toward the equator,
we require evermore centripetal acceleration to hold us toward the Earth’s centre.
The effect is that the acceleration that we feel toward the centre decreases as we
move from poles to equator. In this simple model, the Newtonian gravity provides
the centripetal acceleration as

~acent = −|~ω|2 ~rr

where the vector ~rr is the vector distance from the rotation axis. At any latitude
on the rotating Earth, the total acceleration felt by a mass on the surface is then
~gN = ~gT + ~acent. While ~gN is many times larger than ~acent, at the equator, their
directions are aligned with each other so that at the equator, the acceleration toward
Earth’s centre is just the difference in magnitudes. At the poles, ~acent is zero and so
only the Newtonian gravitational acceleration holds. However at all other latitudes,
the vector directions of ~acent and ~gN must be added. Figure 7 shows that upon this
addition of the two acceleration effects, at latitudes other than Oo and ±90o, the
vector direction of ”down” does not point precisely to the Earth’s centre but rather
to a point on the rotation axis in the opposite hemisphere.
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Figure 7: The effect of the centripetal acceleration on the total downward
acceleration and the direction of the vertical.

What has been left from this analysis is the fact that the Earth’s body and surface
adjusts to the lowered, downward vertical acceleration at the equator as well and so
the radius of Earth’s equator is greater than the polar radius by about 1 part in
298.25, the “flattening parameter”:

f =
re − rp

re

.

In order to take into account the full story of the variation in gravitation acceleration
over the surface of the Earth and the flattened ellipsoidal shape of the Earth is, I
think, beyond the scope of this U2 course. A proper, but still approximate analysis
was first accomplished by Alexis Claude Clairault8 in 1743. The limited argument
I have given is essentially that of Newton, a century earlier. Clairault’s analysis is
known as Clairault’s Theorem9 which is regarded as one of the major accomplishments
in geophysical theory. Clairault’s analysis obtains the radius of the Earth as a function
of latitude as r(φ) = re(1 − f sin2(φ)) where re is the equatorial radius and the
flattening

f =
3(Izz − Ixx)

2r2
eM♁

+
m

2

where m is the ratio of the centripetal acceleration at the equator to the Newto-
nian gravitational attraction at the equator. The IERS’10 best current estimate
for f = 1/298.25642 ± 0.00001 corresponding to re = 6, 378, 136.6m and
rp = 6, 356, 751.9m.

8 Alexis Claude Clairault
9 Clairault’s Theorem

10 Earth Rotation Service’s General Definitions and Numerical Standards
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Figure 8: Flattening and the shape of the Earth.

On the reference ellipsoid which most closely corresponds to the geoid, ~gT is defined,
geodetically, as the acceleration, locally downward: ~gT : [gTx gTy gTz ] = [0 0 gTz ].
The International Gravity Formula (1967) – Helmhertz’ equation obtains gTz as a
function of latitude in accord with Clairault’s theorem,

gTz = 9.780327(1.0 + 0.0053024 sin2(φ) − 0.0000058 sin2(2φ)) [m · s−2],

where φ is the local latitude.

1.5.1 The geoid

The geoid is that equipotential surface that most closely corresponds to the equi-
librium, hydrostatic, nearly ellipsoidal shape of Clairault’s Earth. Colloquially, it is
the mean sea level datum surface. Being an equipotential surface, there is no locally
horizontal acceleration on that surface. The gradient of equipotential defines the ac-
celeration on that surface, ∇U = ~gT , where ~gT assembles the sum of the Newtonian
mass effect and the centripetal acceleration effect as well as effects of any internally
anomalous mass-density within the Earth.

Figure 9: The geoid shown as departures from the reference ellipsoid.
The deepest departure, south of India, is approximately 107 metres
below the ellipsoid and the highest departure in New Guinea is about
85.4 metres above the reference ellipsoid.
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Map from US Naval Academy based on NASA/GSFC data11.

The undulations of the geoid can tell us quite a lot about the mass distribution within
the Earth, about tectonic processes and about convection in the deeper mantle12. You
should also note that the gravitational potential is constant on the geoid; it is not a
surface of constant gravitational acceleration.

1.5.2 Interpreting gravity I:13

• The geoid and isostasy: Recognizing that the geoid is an equipotential sur-
face and that the gravitational potential function due to a mass descreases as
we approach the mass according to convention, we note that where the geoid
surface is low and hence closer to the Earth’s centre, it adjusts to that level
because mass is deficient in the sectoral column. That is, there is mass defi-
ciency beneath geoidal lows and mass excess below geoidal highs. If the Earth
were composed of uniform layers of materials and in hydrostatic equilibrium,
the geoid would conform to the reference ellipsoid. That it doesn’t allows us to
learn something about internal mass distribution.

The reasons for various low regions of the geoid differ. For example, that over
northern Canada is due to depression of the surface by the Laurentian icesheet
that melted away as recently as 8000 years ago. The mantle’s rheology is
plastic-like and the mass, mostly below the lithoshere, that was forced away by
the glacial load has not yet flowed back under that region. The crust of the
Earth is still rising at almost 2 cm/yr around James Bay and Hudson’s Bay.
Coastlines, there, are rising and retreating. This is due to isostatic adjustment.

11 Source site for geoid map.
12 Geological interpretation of geoidal variations
13 Interpreting gravity
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Figure 10: Geoidal surface above high ρ0+ and low ρ0− mass densi-
ties. Note the gravitational acceleration vector direction is normal
to the geoidal surface. Note, as well, that the gravitational accel-
eration vector is not a constant on the geoidal surface but that
it’s horizontal components are 0.

Before continuing with the interpretation of gravity measurements, it would be
useful to understand isostasy.

• Isostasy: By the mid-1800s, the reasons for topography – differences in ele-
vation – on the Earth were not yet understood. George Everest had by 1830
recognized that there was something odd about the mass of the Himalayan
Plateau when he was correcting his survey measurements across India. We
shall deal with his problem later even though his argument for its solution
might have already have provided a prior explanation to the question posed
to the members of the Royal Society of London: “What is the explanation for
the elevation of the Himalayan Plateau and the Ande’s Mountain chain?”. In
1855, two models were offered to the members of the Society in explanation.
Archdeacon J.H. Pratt suggested that the reason for high elevations is that
light materials ”float” higher than do dense materials and that the rock of areas
of high elevation are of low density. G.B. Airy proposed another model: the
high-standing regions are compensated by deeper roots but their densities are
similar to those of low stands. Airy’s hypothesis accounts, for example, for the
height of icebergs. An iceberg that floats high has great root depth. We now
know that over the continental regions of the Earth both models contribute
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almost equally to topographic variations. Variations in ocean bottom depth is
largely explained by Airy’s model. That is, where the oceanic lithosphere is
thickest, and hence oldest, it sinks deeper.

Pratt Model

Darker columns have higher density

Depth of Compensation

Airy Model

All columns have equal density

Depth of Compensation

1.5.3 Measuring gravitational acceleration

Sensitive gravimeters are easily capable of measuring variations in gravity equivalent
to 1 part in 107|~g| on the surface of the Earth. That is, we easily and accurately
measure to the 7th decimal place in the surface gravitational acceleration. Geodetic
instruments can be more sensitive by a factor about 100 and contemporary stationary
observatory instruments by a factor of well more than 1000. At such details of
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measurement, rather minor variations in elevation, local subsurface density, Earth
tides and even tidal and barometric variations in the overlying atmosphere become
important. We must correct these effects away in order to recognize and interpret the
contributions to gravitational accelerations that interest us.

• Elevation – free-air correction: You would not be surprised to learn that as
we increase our elevation above the reference ellipsoid determined by Clairault’s
theorem and Helmhertz’ equation, gravity decreases due to the increasing dis-
tance from Earth’s centre of mass. If we were to measure gravity at elevation h
m above the reference ellipsoid, gravity would decrease by ∂z(gTz) ·h. We cor-
rect to the reference ellipsoid datum by adding in this amount to our observation
of gravity at elevation in a free-air correction. On the geoid, that equipotential
surface most closely fitting the reference ellipsoid, ∂z(gTz) = 3.086 × 10−6

m · s−2/m.

• Elevation – Bouguer density correction: Typically, when making gravity
measurements, we are at elevation because we are on a plateau, hill or moun-
tain. We seldom make measurements of gravitational acceleration from the
air because we have no stable from which platforms to do so. We recognize
that the intervening mass of the hill or mountain from the level of the refer-
ence ellipsoid datum has mass and that that mass is gravitationally attractive.
An observed measure of gravity is increased by 2πGρbh

14 where ρb is the so-
called Bouguer density of the intervening crustal rock mass. Typically, using
ρb = 2700 kg · m−3, 2πGρb = 1.132 × 10−6m · s−2/m. We subtract this
amount from an observation to take the free-air corrected measurement to the
reference ellipsoid datum when the intervening material is not free air.

Often you will see gravity data provided as Free-air gravity or as Bouguer gravity
wherein a datum value is that of the theoretical gravity that one would expect
on the reference ellipsoid.

• Terrain correction for local hills and valleys: Local highlands above the
level of measurement produce a gravitational attraction which reduces the down-
ward gravitation. Also, local valleys and lowlands below the level of measure-
ment reduce the downward attraction. Both local hills and valleys reduce the
measured gravity. This is taken in account in gravity measurement by modelling
their contribution and then adding resultant and compensating downward ac-
celeration component.

14 Properly, this correction holds for elevation above a plane and not for the whole spherical Earth.
If one were to consider a layer of thickness h covering the whole spherical Earth, the correction
would be 4πGρbh. Normally, though, we are concerned with only local elevations when making
this correction and then the stated value is more nearly the correct one.
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Figure 11: Corrections to gravity measurements made at elevation
from the geoid — a work chart!

Upon applying all three of the these corrections, we can simulate the accelera-
tion of gravity that would be measured on a flat plane at the elevation of our
measurement. We would expect that, if there is no nearby anomalous masses,
our corrected gravitational acceleration measurements would be idential for all
of our measurements. Particularly in geophysical prospecting for local near-
surface masses that might indicate mineralization, reservoirs of petroleum, or
variation in subsurface geological structure, these corrections are always ap-
plied. For geodetic and global geophysical gravity work, either the geoid which
is best measured by satellite orbital perturbation or the free-air and/or Bouguer
anomaly are most useful. Recently, gravitational accelerations are being mea-
sured at satellite elevation15. Using the fact that where no intervening sources of
mass contribute to the field, Laplace’s equation, ∇2U(~r) = 0, where U(~r) is
the gravitational potential at the satellite’s orbit, we can downward continue the
gravitational potential and acceleration measurements to the surface or geoid.
Note that ∇(∇2U(~r)) = ∇2~g(~r) = 0 also.

15 The GRACE program
Grace measures gravity variations
ESA’s GOCE program
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• Colloquial units in gravitational acceleration measurements:

1Gal = 10−2 m · s−2; 1 g.u. (gravity unit) = 10−4 Gal.

1.5.4 Modelling gravity anomalies:

The gravitational potential at position [ 0 0 0 ] due to a mass element of volume
dv = dx · dy · dz and density anomaly ρc at position [ x y z ] is obtained as

dU(0) = −
Gρc√

x2 + y2 + z2
dv.

While the coordinate system might not have been well chosen for the particular prob-
lem, we could quite easily build up any extended mass structure using the differential
bricks of volume dv.

dx
dy

dz

o

Each corner (x  , y  , z  )i     i     i

(0, 0, 0)

ρ
contrast

Figure 12: Modelling a gravitational anomaly.

For the extended body shown in Figure 12, we easily(!) obtain:

U(0) =

∫
V

dU(0) = −
∫ x2

x1

∫ y2

y1

∫ z2

z1

Gρc√
x2 + y2 + z2

dxdydz.

Integrating this over range z1 → z2 then this result over range y1 → y2 and finally
that result over range x1 → x2 will be quite laborious even when using the conve-
nience of the WolframxAlpha service. This gives us the gravitational potential due to
that block seen from the coordinate origin. To obtain the measurable, gravitational
acceleration, we would then have to compute the gradient of the computed potential:

~g(0) = −∇U(0).
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If it were that we wanted the gravitational acceleration rather than the potential, we
could obtain this directly by another route.

Just as the gravitational potential contributions due to each elemental brick add up to
give us the full potential, so the gravitational acceleration contributions also add up
brick-by-brick. Unfortunately, though, ~g(0) is a vector quantity and so we would have
to solve for each of the components of the vector separately. This could lead to quite
an elaborate sequence of computations and as I claim that I want you to understand
principles rather than details through calculation, we won’t go there today.

Providing one is not very close to the block, useful approximations can be obtained
for the gravitational potential and the measurable gravitational acceleration at our
origin. One might, for example, replace the full mass of the block by an equivalent
mass at its centre of mass:

~rcom : [
x1 + x2

2

y1 + y2

2

z1 + z2

2
].

Being a little fussier, we might divide the box into 8 sub-blocks and obtain a better
approximation of the potential and acceleration at our origin. We could divide each
side into 3s and now with 27 sub-blocks obtain an even better approximation. These
latter calculations are best performed numerically.

For the calculation based on the single mass replacement, though, the issue is simple
enough to compute. For algebraic convenience, let us substitute X = (x1 + x2)/2,
Y = (y1 + y2)/2 and Z = (z1 + z2)/2. The radial distance to that center of
mass is

| ~rcom| =
√

X2 + Y 2 + Z2;

the vector direction is determined simply as the unit length vector – let us call it
ûrcom = ~rcom

|~rcom| . The components of this unit vector are the direction cosines of the

vector ûrcom : [ α β γ ], where:

α = cos a =
X

|~rcom|
,

β = cos b =
Y

|~rcom|
,

γ = cos c =
Z

|~rcom|
and α2 + β2 + γ2 = 1. See the diagram of Figure 13.
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Figure 13: Locating the COM (centre of mass) of the block.

The direction cosines determine the direction of gravitational acceleration anomaly
due to the mass: [ α β γ ]. We calculate the magnitude of gravitational acceleration
toward the block and scale its components by the direction cosines of the unit vector.

The volume of the block is V = |x2 − x1| · |y2 − y1| · |z2 − z1|; its mass is
Ma = ρcV and the magnitude of the acceleration toward that block is then,

|~ga| =
GMa

|~rcom|2

with each of the three components of the vector acceleration scaled by the direction
cosines.

~ga : [ |~ga|α |~ga|β |~ga|γ ].

• George Everest’s survey transect across India: Colonel Sir George Ever-
est16 was Surveyor-General of India from 1830 to 1843. He completed the Great
Trigonometric Survey of India along a meridian arc from the far south of the
subcontinent north to Dehradun and Nepal. As he surveyed, he very accu-
rately chained the distance along the meridian, about 2400 kilometres. He
also employed navigation by the stars to measure the meridianal distance. He
found a discrepancy between the measurements of the differences of astronomic
and geodetic latitudes of Kalianpur on the Ganges plain and Kaliana, near

16 George Everest
The Great Trigonometric Survey
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Dehradun17. His geodetic distance corresponded to a lesser latitude difference
of 5.24′′. He correctly attributed the discrepancy to a small difference to a
deflection of the plumb bob that defined the local vertical as he approached
Kaliana, near Dehradun, and the Himalayan Plateau. Pratt attempted to de-
termine the difference based on his model for isostasy; he calculated that the
gravitational attraction to the Himalayan Plateau should have deflected the
plumb line by 15.885′′, three times as much. Airy recognized that the over-
estimate was due to mass-deficient roots of the mountains in accord with his
model for isostasy.

Pratt used essentially, the gravitational anomaly model above, in his overesti-
mation of the deflection.

W

Figure 14: Everest’s anomalous deflection of the vertical... After
A.B. Watts.

An exercise (not for immediate grading but recommended as prototype
for the first take-home assignment): Using the very simple model above with
replacement for the point mass at the centre of mass, calculate the horizontal de-
flection of Everest’s plumb bob (level) at Dehradun, India due to: a) the mass of
the Himalayan Plateau ignoring the mountain roots and b) in consideration of the
mountain roots.

• Regional levelling of gravity surveys18: Airy isostasy tends to produce a
reduction of gravity (acceleration measures) as seen in broad regional surveys

17 From Kalianpur to Kaliana: 1100 kilometres
18 Applied Geophysics: Gravity Theory

26

http://maps.google.ca/maps?f=d&source=s_d&saddr=Kalianpur,+Madhya+Pradesh,+India&daddr=Kaliana,+Uttarakhand,+India&geocode=FevqXAEdddByBCk9CGnO_WxhOTEHwAQXp3P4Gg%3BFfdB1AEdSj2kBCmZkT_WhTUPOTHK_DihNdh6tA&hl=en&mra=ls&dirflg=h&sll=26.778075,76.21992&sspn=13.724434,27.861328&ie=UTF8&ll=26.411551,79.057617&spn=13.768867,27.861328&t=h&z=6
http://rallen.berkeley.edu/teaching/F04_GEO594_IntroAppGeophys/Lectures/L02_GravTheoryMeasurement.pdf


over highlands and plateaus. While most surveys employing gravitational ac-
celeration are not focussed on regional surveys and the free-air, Bouguer and
terrain corrections reduce those effects that are not interesting to our survey,
another correction, that recognized by Everest and Airy, is required to level
surveys over regional scales.

gravity anomaly

geoid e

d

dggd

ρ

ρ
t

m

dw ρ
w

Figure 15: Isostatic correction modelling for regional surveys.

dw: depth of ocean basin, e: elevation of topography, dt: depth
to root (calculated under Airy assumption), dg: depth to root at
point where elevation corresponds to geoid (usually taken to be
33 kilometres), ρm: mantle density, ρt: density of topography
(usually taken to be 2670 kg · m−3).

While we could choose any datum for levelling our survey results, it is conven-
tional to choose a reference point for the modelling at the level at which the
geoid intercepts the topographic plateau or mountain range and model a correc-
tion relative to the acceleration at that point. Globally, the depth to the crustal
root at that point is about 30 − 33 kilometres. Knowing this, the density of
the plateau, the height of the plateau, we can model the residual gravity defi-
ciency across the highland and subtract the deficiency from our measurements.
In order to calculate the correction, we first obtain the root depth as

d = dg + e(
ρt

ρm − ρt

)
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over the land areas and

d = dg − dw(
ρt − ρw

ρm − ρt

)

where ρw is normally taken to be that of sea-water, 1030 km · m−3over the sea
(sub-geoid) areas. Over regional areas small enough that we may disregard the
sphericity of the Earth, this calculation, point-by-point is not difficult to model.
Over distances where the curvature of Earth’s surface begins to matter, In 1953,
Heiskanen showed that the the gravitational effect of the root at any point of
observation, O, along the profile on the geoid was

∆gz = Gm
( a2

2R
+ d cos α)

(a2 + d2 − 2ad sin(α/2))3/2

and d is the root depth at the point of contribution to the regional anomaly.
(see Figure 16.).

Rd

α

COM (Earth)

O

a

Figure 16: Regional corrections on a spherical Earth. From the
point of observation, O, the contribution at angular distance, α,
arc distance, a.

While the geoid is essentially mapped using satellite geodetic techniques, the gravi-
tational acceleration field has normally been mapped by national geophysical ground
surveys19. The latter work is laborious and so, with some lesser degree of sensitivity
to near surface density anomalies and poorer resolution with respect to placement

19 Canada: Geoscience Data Repository
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and extent, satellite techniques20 are now being employed to measure the gravity
field. Gravitational acceleration measurements obtained by satellite gradiometry are
downward continued to the surface using Laplace’s equation under the assumption
that the intervening atmospheric mass is either uniform over areas or barometrically
measured.

1.5.5 Some simple modelling of gravity anomalies:

While the principles of the process for the modelling of anomalies in surface gravita-
tional accelerations have been essentially covered above, here, we shall look to a few
useful and simple models.

• A buried sphere: The gravitational acceleration due to a volume with mass-
density anomaly ρc with perfectly spherical distribution can be exactly replaced
by a point mass model with that mass centred on the sphere’s centre of mass.
Suppose we were to have a spherical mass of density contrast ρc with the host
rock, having a radius a and buried at depth d. The mass contrast with the host
rock would be Mc = 4

3
πa3. We calculate the vertical component of the gravita-

tional anomaly caused by this body as measured from a flat surface. Note that
if we were to measure the gravity anomaly with instruments across the ground
surface above this mass, we would employ all of the corrections to the accel-
eration measurements as explained above before comparing our measurements
with the theoretical anomaly.

∆0

d

x

a

ρc

gaz(x)

20 The major current and recent gravity missions are known by acronyms: GRACE, GGOS,
GOCE
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Figure 17: Calculating the gravity anomaly due to a buried sphere.

At the measurement point ∇ in Figure 17, the magnitude of the anomalous
gravitational acceleration directed from the measurement point to the body’s
centre of mass is simply

ga =
GMc

d2 + x2

and its vertical component, that which we would usually measure with a gravity
meter, would be scaled by

d
√

d2 + x2
.

The downward-directed vertical component gravity anomaly at horizontal dis-
tance x from the centre of the spherical mass is then, simply,

gaz(x) = GMc

d

(d2 + x2)
3
2

;

its maximum value when x = 0 would be

gaz(x = 0) = GMc

1

d2
.

At some separation x1
2
, the half-width at half-height (point  ), the anomaly

would be

gaz(x1
2
) =

1

2
gaz(x = 0).

A simple calculation obtains d = 1.305x1
2

and we have a simple method for
determining the depth to the centre of mass from our measurement datum plane.

While the buried sphere is the most nearly trivial of models, it is an extremely
useful one for describing the essential gravity anomaly due to buried compact
bodies. We shall continue with a few other standard models.

• A buried, infinitely long, horizontal cylinder: Many anomalous masses
are not constrained with small dimensional range in all three component di-
rections. For a body that is constrained to small dimensions in the x and z
direction but not in the y direction, we might approximate it by an infinite
horizontal cylinder. We call this a 2-dimensional model because 1 dimension,
the y is left unconstrained.
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Figure 18: Calculating the gravity anomaly due to a buried hori-
zontal cylinder.

We calculate, rather directly, the gravity acceleration toward the cylinder along
a line parallel to the y-axis. Again, we recognize that the centre of mass of the
infinite cylinder, assuming its contrast density is constant, forms a line along
the central axis of the cylinder. Letb represent the mass per unit length along
the axis of the cylinder. At distance x from the cylinder’s axis, the gravitational
acceleration due to an element of unit length separated by distance y′ from the
y-origin contributes

d~ga = −
Gb

r2

where r =
√

d2 + x2 + y′2 and with direction toward the element of mass.
Then by integrating all the unit-length mass elements from y′ = −∞ to y′ =
+∞, we obtain the acceleration anomaly directed toward the centre line of the
cylinder at position x, y = 0 on the surface21 :

~ga(x, y) = Gb

∫ +∞

−∞

1

d2 + x2 + y′2
dy′ =

2πGb
√

d2 + x2
.

21For a cylinder truncated at y′ = ±Y , this integral becomes

~ga(x, y = 0) =
2Gb tan−1( Y√

d2+x2
)

√
d2 + x2

.

31



At distance x from the origin, the vertical acceleration is simply scaled by
d/

√
d2 + x2 and

gaz =
2πGb

d2 + x2
.

The half-width at half-height is trivially calculated: x1
2

= d.

Most introductory textbooks in geophysics and applied geophysics obtain many stan-
dard gravitational anomaly models. The principles have been shown for example.
Still, these two models are among the most informative in interpreting gravity anoma-
lies. There is no deeper compact (i.e. 3 constrained dimensions) structure that de-
termines a narrower anomaly than that of the buried sphere. That means that if
one does measure a compact anomaly, we can use the half-width at half-height to
determine the deepest possible depth of its centre of mass. This is useful in a mineral
prospect where one might be siting drilling to obtain geological samples. Whatever
you are drilling for won’t be deeper than x1

2
. Similarly for anomalies that show very

long strike, we might use the half-width at half-height obtained by survey on a profile
normal to the strike to determine the maximum depth to the centre of mass of long
bodies. One can, of course, engage in elaborate modelling for any imagined structure
and adjust the structural model to fit, as closely as we may want, anomaly measure-
ments. It should though be noted that this process can obtain an infinite number
of very different structural-density models that can exactly fit any anomaly. That
is, there is an inherent ambiguity in modelling. We can find the anomaly caused by
any structural and density variations if we know the variations but we can’t find the
model that explains our anomaly measurements uniquely. This is a characteristic of
all geophysical inverse problems. We can always determine the geophysical anomaly
due to geophysical variations (the forward problem); we can’t uniquely determine the
geophysical variations from geophysical measurements (the inverse problem).

1.6 Geological interpretations of gravitational potential and
acceleration surveys

Many geologists see geophysical technologies and the geophysicists who provide them
as something of a deputy or service science for geology. Many geophysicists see their
science as fundamental and almost independent of geological investigations. They, like
I, have often chosen to focus their interests below the geological surface of the planet or
to other planets of the solar system. The space programs are largely geophysical, but
even then, much of what we can learn about other representative planets and moons
in the solar system is geologically or geographically limited to the surface. Perhaps the
only core, solid body geophysics for the planets and moons relates to their magnetic
fields and internal mass distributions reflected in their rotation moments of inertia.
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Geological interpretation of geophysical data probably requires more understanding of
geological processes and conditions than understanding of geophysical science. Here,
I shall retreat to my rather limited geological knowledge and experience... less than
that of many of you in this class. I also retreat to a PowerPoint presentation of the
lecture: Interpreting Gravity.
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