
Harmonic expansions of geo-fields

1 Laplace’s equation

Earlier in the term, we encountered the classical equations of geophysical fields and
their dynamics. That which is simplest among them is Laplace’s equation. This
equation holds for static fields in what is sometimes called the “harmonic domain”.
The equation for a harmonic field – let’s call it V – is:

∇2V = 0.

Earlier in the year, we described non-harmonic and dynamic variations on this equa-
tion, for example, Poisson’s equation,

∇2V = C,

the wave equation,

∇2V =
1

c2

∂2V

∂t2
,

where ~c is the wave velocity and the diffusion equation,

∇2V = κ
∂V

∂t

and κ, a constant of diffusion. You might note that these constants are described
locally but in any real problem that we attempt to solve, they may well vary with
place. Wherever Laplace’s equation holds, if we know V over a surface in that
space, we can obtain V on any other surface in that space. For example, if we were
to describe V (x, y, z) on a surface z = z1, we can determine V (x, y, z = z2)
through simple harmonic continuation. Suppose know the surface V (z = 0) where
0 is a chosen arbitrary datum level in z. Form:

∂2V

∂x2
+

∂2V

∂y2
= −

∂2V

∂z2

and obtain the Fourier transform of this equation with respect to x and y:

−[k2
x + k2

y]V(kx, ky, z) = −
d2

dz2
V(kx, ky, z).

We now have an ordinary, second order differential equation in V which has general
solutions of the form

V(kx, ky, z) = A(kx, ky)e
√

k2
x+k2

yz + B(kx, ky)e
−
√

k2
x+k2

yz.
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Expecting that our gravitational potential V (x, y, z) is due to some local “source”,
as we increase our distance from that source, V increases toward 0 by conven-
tion. Normally we describe a reference potential field with value V = 0 at in-
finite distance from the field source. That means that V(kx, ky, z = ∞) → 0
and, consequently, A(kx, ky) = 0. It then becomes trivial to change the “eleva-
tion” of observation... Fourier transform the potential function V (x, y, z1) to obtain

B(kx, ky)e
−
√

k2
x+k2

yz1 , then, for surface at z = z2, reform V(kx, ky, z2) with the
amplitude coefficients B(kx, ky) and invert the Fourier transform for V (x, y, z2).

In geophysical exploration, upward and downward continuation are seldom applied
to the potentials themselves. Rather, we recognize that the gradients of the poten-
tials and the components of the gradients also follow Laplace’s equation such that if
the anomalous gravity acceleration field is ~ga(x, y, z) = −∇Va(x, y, z) and if we
upward continue the vertical component of gravity, gaz from a datum surface, say
z = 0 to another surface at elevation z > 0, we simply multiply Fourier coefficients,

Gaz(kx, ky, z = 0) by e−
√

k2
x+k2

yz and invert the scaled Fourier transform. For
downward continuation from surface z > 0 to z = 0, we would simply divide by the
same scale coefficients.

These field continuation rules hold wherever Laplace’s equation holds for the field
being continued and in whatever coordinate system we choose to “measure” its values.
The process is not essentially more difficult to realize for a spherical coordinate system
though the mathematical technology appears more complicated. We can upward
or downward continue the gravitational potential field of the Earth or the static
geomagnetic potential field as described by spherical harmonic coefficients providing
we do not attempt to “continue through sources”. That is for gravity, anywhere
above the surface of the Earth, Laplace’s equation holds at least approximately as
we ignore the atmospheric density variations. For the geomagnetic field, the surface
field can be upward continued through to the base of the ionosphere where electrojet
currents contribute to sources. Normally, in continuing the geomagnetic field, we
attempt to “model out” the ionospheric current field. This can be a difficult problem
in situations where, for example, strong auroral displays are being observed.

2 Gravitational Potential

Let U(r, θ, φ) represent the Earth’s gravitational potential field at a point outside
the Earth’s surface. Laplace’s equation holds:

∇2U = 0.

Within the Earth, Poisson’s equation,

∇2U = 4πGρ
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where ρ is the local density, holds. If we carefully select our coordinate origin, the
“shape” of the potential outside the body of the Earth will nicely form as “layers”
over the surface. That allows us to separate variables in solution of Laplace’s equation
so that

U(r, θ, φ) = R(r)Θ(θ)Φ(φ).

Given this separation, we can describe an expansion of the external potential in spher-
ical harmonics. We would have to solve Poisson’s equation, again using separation of
variables, within the body of the Earth to obtain the internal potential.

3 Expansion for the “geoid”

The stationary part of the Earth’s gravitational potential U at any point P (r, θ, φ) on
and above the Earth’s surface is expressed on a global scale conveniently by summing
up over degree l and order m = 0 of a spherical harmonic expansion. The spherical
harmonic (or Stokes’) coefficients represent in the spectral domain the global structure
and irregularities of the geopotential field or, more generally spoken, of the gravity
field of the Earth. The equation relating the spatial and spectral domain of the
geopotential is as follows:

U(r, θ, φ) =
GM

Re

[
Re

r
C0

0+

lmax∑
l=1

l∑
m=0

(
Re

r
)l+1P m

l (cos θ)(Cm
l cos mφ + iSm

l sin mφ)]

where

r, θ, φ are the spherical geocentric coordinates of computation point (radius, latitude,
longitude),
Re is the reference length (mean semi-major axis of Earth),
GM is the gravitational constant times mass of Earth, l, m, degree, order of spherical
harmonic,
P m

l are the fully normalized Lengendre functions, and
Cm

l and Sm
l are the Stokes’ coefficients (fully normalized).

C0
0 is close to 1 and scales the value GM . The degree 1 spherical harmonic coefficients

C×
1 are related to the geocentre coordinates and zero if the coordinate systems’ origin

coincides with the geocentre. The coefficients, C1
2 and S1

2 are connected to the mean
rotational pole position that is a function of time.

The Earth’s shape is approximately ellipsoidal with Stoke’s coefficients Cell, l =
0, 2, 4, .... The expansion with these coefficients that most closely fits the surface
of the Earth is called the reference potential, V (r, θ, φ). The difference between
V (r, θ, φ) and U(r, θ, φ) for r = Re, the surface, determines the geoidal deviations
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from the reference ellipsoid:

T (Re, θ, φ) =
GM

Re

[C′
0
0 +

lmax∑
l=1

l∑
m=0

P m
l (cos θ)(C′

l
m cos mφ + iS′

l
m sin mφ)]

with C′ = C−Cell. You might note that C′
0
0 is very nearly 0. This is essentially the

spherical harmonic expansion of the “geoid”. T (r, θ, φ) is the “disturbing potential”
field that a satellite at radial distance r would feel that differs from that of a uniform
ellipsoidal Earth. We may map this at elevation of the satellite and then downward
continue it to the surface where r = Rs. Downward continuation is “easy”. One
need only scale each coefficient by ( r

Rs
)l+1.

4 Expansion for the geomagnetic field

A major difference between the gravitational expansion and that for magnetism de-
rives from the fact that magnetic poles must always come in pairs. That is there is
no monopolar field component. If W (r, φ, φ) represents the full harmonic expansion
of the geomagnetic field, that expansion can have no C00, monopolar, component.
Moreover, all coefficients for odd l should also be zero.

W (r, θ, φ) = Q

lmax∑
l=1

l∑
m=0

(
Rs

r
)l+1P m

l (cos θ)(Cm
l cos mφ + iSm

l sin mφ)

where Q represents the scale of the field strength. The Earth’s “dipole moment”, com-
monly used in the scaling of a planetary magnetic field, is determined by ∇W (r, φ, φ);
lmax = 1. Given this expansion, you might note that the dipole potential field falls
off with distance as r−2; the gradient of this field, the measurable quantity, falls of
as r−3. The monopolar field of gravitational potential falls off as r−1, it gradient,
the measurable acceleration falls off as r−2.
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