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Abstract

Magnetic field of the Earth is maintained as a result of turbulent motions in it’s
core. Dynamo theory, based on the framework of magnetohydrodynamics, specifically
mean field magnetohydrodynamics and electrodynamics, holds the key to the generation
of Earth’s magnetic field. Many of it’s properties such as polarity reversal, westward
drift of fields, intensity variations, are approximately explicable with the understanding
of Dynamo theory. This paper outlines and briefly discusses important models of the
theory, namely the Kinematic and the Turbulent model. Few simple examples are also
provided to aid in the comprehension of such a complex topic.

1 Introduction

Many exotic phenomena of scientific interest, for example the Aurora Borealis, Sferics,
Whistlers, and Tweaks, are attributable to the magnetic field of the Earth. Yet the
generation of this magnetic field is not completely understood. Lots of papers are
written everyday in an effort to precisely model the properties of Earth’s magnetic field;
it is still an open question. Nevertheless with the success of Dynamo theory many new
channels have opened to analyse the problem in many different ways. Various proposed
models, such as the Kinematic dynamo model as well as the Turbulent dynamo model,
have been able to approximately, if not precisely, account for some canonical properties
of Earth’s magnetic field.

Interest in the problem of the geodynamo was not readily established after Sir Joseph
Larmor, in 1919, asked the famous question [1], ‘how could a rotating body such as the
Sun become a magnet?’ At the time, there was no well tested theory to explain this
phenomenon and, in the case of the Earth, it was believed that the core maintained
permanent magnetization to cause a magnetic field. Soon, through statistical mechanics
and with the aid of seismological studies, it was realized that high temperatures (≈
4200K) at the Earth’s core exceed the Curie point of most metals. It was evident
that Earth’s magnetic field could not have originated due to magnetization of it’s core
but something else must be at play here. Larmor also proposed that an electrically
conducting fluid in a rotating body may generate a magnetic field in a way akin to a
homopolar disc dynamo.

This paper outlines and briefly describes the guiding principles of Dynamo theory
using the framework of Magnetohydrodynamics. In the study of Dynamo theory, two
important models, namely Kinematic and Turbulent [2], have emerged quite helpful
in the understanding of this complex phenomenon. A discussion on both models is
presented in this paper. Due to the complexity of the subject, mathematical rigor is
kept to a level adequate enough to clearly present the theory. In any case, should one
feels unsatisfied with the arguments, references are provided for further reading on this
subject. Next, I present some known properties of Earth’s magnetic field.
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2 Magnetic Field of the Earth

It is not surprising why one would speculate that Earth’s core has some permanent
magnetization, since the magnetic field of Earth resembles that of a physical dipole or
a bar magnet (see fig. 1). Most ferromagnetic minerals, for example Iron (Tc = 770◦C)
and Nickel (Tc = 358◦C), have Curie point temperatures on the order of ∼ 1000K

[2]. Temperatures well above the Curie point result in randomization of individual
dipole spins in ferromagnets rendering the mineral demagnetized. The core of the Earth
comprises of the inner core, mainly composed of Iron/Nickel alloy, and the outer core
with Iron and an admixture of other mineral in molten state. As known from various
geological observations, temperature at the Earth’s core is on the order of ∼ 4200K

which suggests that most mineral do not retain their magnetization, if it was present
initially. The fluid in the outer core is electrically conducting and it is reasonable
to believe that some magnetic induction activity is possible due to it’s non-uniform
rotation. Magnetic field on the surface of the Earth has been observed to change

Figure 1: Magnetic field of the Earth with a dominant dipole structure [2].

on timescales ranging from milliseconds to millions of years [3]. Such fluctuations in
the surface magnetic field, referred to as geomagnetic secular variation, are a result
of ionospheric interaction with the magnetic field to produce short term variations.
However, long term fluctuation arise due to changes pertaining to the fluid motion in
the outer core. Paleomagnetic data also indicate the existence of a westward drift of
the non-dipole field. From various measurements, it was determined that the average
velocity of this westward drift is about 0.18◦ per year and a period of 2000 years to
complete one circuit of the Earth [2].

Another perplexing question in the history of geomagnetism is the phenomenon of
field polarity reversals. Archeomagnetic and paleomagnetic studies, strongly suggest
the occurrence of polarity reversals in the 4.5 billion years long history of our planet.
Some of the data collected from remnant magnetic field found in kiln baked pottery
and rock samples do not match the present day field polarity. Calculations performed
on the collected data yield an average field polarity reversal timescale of about 250,000
years (see fig. 2). However, this period is highly variable and polarity reversals occur
randomly. Surprisingly, no such reversal has been noted to have taken place over the
last 780,000 years [4]. Furthermore, the intermediate state between two consecutive
reversals is marked by gradual decrease in field intensity up to 50% of the initial field
before next reversal occurs. Paleomagnetic observations yield a 10% decrease in field
intensity at present from what was measured in 1830s [4]. It is reasonable to believe
that another field reversal may take place in the near future. Solution to all the above
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Figure 2: Magnetic field polarity reversals over the last 4 × 106 years. Only the direction of the
dipole is indicated in the figure and not its intensity [1].

mentioned mysteries can be approximately obtained using the principles of Dynamo
theory. A brief discussion is provided in the next section.

3 The Geodynamo

Dynamo theory is a branch of Magnetohydrodynamics which deals with the self-excitation
of magnetic fields in large rotating bodies comprised of electrically conducting fluids [4].
The motion of this conducting fluid in a simply connected cavity gives rise to a current
distribution. From Ampère’s law

∇× B = µ◦J (1)

with the assumption that µ ≈ µ◦ for most materials, the current distribution mate-
rializes a magnetic field which acts to enhance any primary field present, in a way,
producing a self sustaining chain reaction. Now, the origin of the initial weak magnetic
field is not yet known but the process that follows afterward can be very closely modeled
with Dynamo theory. Phase transitions in the Earth’s core occur at [1]

ROc ≈ 0.55RE & RIc ≈ 0.19RE (2)

where RIc is the inner core radius and ROc is the outer core radius. The region RIc <

r < ROc, as mentioned earlier, is made of liquid Iron with traces of silicon, sulphur,
and carbon. Glatzmair and Olson [4] argue that there are three main requirements for
a self sustained Dynamo action. The first and most important condition necessary for
geodynamo is the existence of a conducting medium (see fig. 3). Large amount of Iron,
comparable to 6 times the volume of the Moon [4], in its molten form very suitably
fulfills this basic need. Secondly, continuous supply of energy, provided by thermal
convection of fluid, is required to drive the dynamo. Initially during the accretion of
Earth from leftover dust in the protoplanetary disk of the Sun, trapped heat in the
core dissociated iron in a liquid form. Subsequent cooling as well as pressure from
overlying material resulted in the crystallization of iron culminating in the solid inner
core. Thermal differences between a hotter core and a colder mantle, cause vigorous
convective currents since the viscosity of liquid in the outer core is comparable to that
of water [4]. Consequently, blobs of molten iron to rise to the mantle and dissipation of
energy through the thin crust cause the blobs to fall back onto the inner core. Moreover,
evolutionary history of Earth plays an important part in driving the geodynamo such
that the rate of cooling of inner core is directly linked to thermal convection. It will
become more clear in the later sections, specifically following the discussion on Turbulent
dynamo model, that these convective and non-uniform turbulent motions are closely
connected to the generation of Earth’s magnetic field. Third requirement is differential
rotation of the conducting fluid acquired from the coriolis effect induced by Earth’s
rotation. Rising blobs of molten iron are forced to follow a helical path, in a way
similar to ocean currents (see fig. 4). Now, in the framework of Dynamo theory, fluid
velocity u is presumed to satisfy certain simplistic boundary conditions, such as

∇ · u = 0 n̂ · u = 0 at r = RIc & r = ROc (3)

3



Figure 3: Interior structure of the Earth. RE = 6380Km; 1. solid inner core comprised of
iron/nickel alloy; 2. liquid outer core with molten iron and an admixture of other elements; 3. solid
mantle [1].

where n̂ is the radial normal vector orthogonal to the outer core [1]. Evidence of
all the above mentioned activities working in unison to generate planetary or solar
magnetic fields can be found universally. For example, Jupiter has a very large mean
surface magnetic field strength in comparison to that of Earth [1]. Vast accumulation
of liquid hydrogen, with an admixture of helium, under high pressure is the prime cause
of such an enormous field. Moreover, the planet spins at twice the rotational speed
of the Earth. The conditions at Jupiter’ core are very similar to the ones described
above. Thus, there is reason to believe that Jupiter’s magnetic field, like Earth’s,
originated from the same dynamo action. The essential question now is that is it

Figure 4: Convection in a rotationg sphere with angular speed Ω. Blobs of molten iron forced to
follow a helical path contained in columns parallel to the rotation axis [2].

possible to construct a mathematical framework using known electrodynamic equations
from Maxwell’s theory to closely match all the observations? The solution to this
complex problem has been found in the construct of Dynamo theory. Before embarking
on the mathematically rigorous path to the theory, lets digress to a simpler version of
a solution to the generation of magnetic field through magnetic induction.
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4 Homopolar Disc Dynamo: A Simple Example

All the required conditions, except convection, for magnetic field generation in a rotating
body can be seen at work in this simple example of a homopolar disc dynamo (see fig.
5). In the figure, a metal disc of radius a rotates with frequency Ω in a uniform magnetic
field. Initially this magnetic field is created by running a current I through the wire
which is coiled in the same sense as that of the rotation of the conducting disc. To close
the circuit, two sliding contacts, one touching the disc at S and the other touching the
axil, are installed. Let the magnetic field be oriented in the ẑ direction,

B = Bẑ (4)

Magnetic field produced by some initial current I in the wire induces a Lorentz force
per unit charge on the spinning disc (with tangential velocity u = Ωrφ̂) and generates
an Emf.

fmag = u × B (5)

⇒ E =

∫ a

0

(u × B) · dr (6)

= Ω

∫ a

0

Bzrdr (7)

=
Ω

2π

∫ a

0

B · da (8)

=
Ωφ

2π
(9)

From the process of mutual and self induction then, the magnetic flux passing through

Figure 5: The self-exciting homopolar disc dynamo [9].

the disc with mutual induction M is [5],

φ = MI (10)

Now, the main equation describing the whole setup, with self induction L and resistance
R of the wire, is

E =
MΩI

2π
= L

dI

dt
+ RI (11)

⇒ 0 =
dI

dt
+

1

L
(R −

MΩ

2π
)I (12)
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C = I(t) exp

[

t

L
(R −

MΩ

2π
)

]

(13)

I(t) = I◦ exp

[

−t

L
(R −

MΩ

2π
)

]

(14)

It is clear from (14) that the system is unstable when Ω > 2πR
M

since the current
increases exponentially in time, but so does the retarding torque. Eventually, the disc
slows down to a critical frequency

Ωc =
2πR

M
(15)

where the driving torque just equilibrates the retarding torque, assuming no other fric-
tional components are present, self-maintaining a steady current and a steady magnetic
field.

The system of a homopolar disc dynamo is only but a good analogy to the origin
of the magnetic field of the Earth. It is completely devoid of the conditions present
at the Earth’s outer core, as there is no convective diffusion, and in no way resembles
or accounts for various complexities. Furthermore, if one carefully notes, the system
exhibits axial symmetry of the velocity field which generates a poloidal magnetic field.
This is where the homopolar disc dynamo fails, in the context of geodynamo, as sug-
gested by Cowling that axially symmetric systems cannot sustain dynamo action [6]. A
discussion on Cowling’s theorem is presented in the following section.

4.1 Cowling’s theorem

Cowling, in 1934, argued that any axisymmetric toriodal velocity field is unable to
maintain an axisymmetric poloidal magnetic field (see fig. 6). The field lines encircling
around the toroidal current, as displayed in the figure, must be closed curves. Then, at
the two limiting points, N and N’, the magnetic field vanishes.

Figure 6: Axisymmetric poloidal field lines in the meridional plane with a toroidal current distri-
bution; N, N’ are neutral points [6].

∇× B = µ◦J 6= 0 (16)

However, the current density is not zero there. Since the current is toroidal, it cannot
be maintained by an electrostatic force. Then, the current has to decay due to Ohmic
dissipations because the magnetic field is zero and cannot maintain the current at the
two points. With the decay of toroidal current, the poloidal field also decays. Hence,
no axisymmetric field can be maintained by any axisymmetric current.
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5 Mathematical Framework of Dynamo Theory

One of the most important equations in Dynamo theory is the magnetic induction
equation [7], which states that

∂B

∂t
= ∇× (u × B) + η∇2

B (17)

Based on the Magnetohydrodynamic (MHD) assumption that,

∂D

∂t
= 0 (18)

change in displacement current density with time is zero, (17) can be easily derived
using Ampère’s law from (1) and Ohm’s law

J = σ(E + u × B) (19)

Taking the curl of (1) on both sides and plugging in (19) for J yields,

∇× (∇× B) = µ◦(∇× J) (20)

⇒ ∇(∇ · B) −∇2
B = µ◦σ [∇× E + ∇× (u × B)] (21)

since ∇ · B = 0 ∇× E = −
∂B

∂t
then (22)

⇒ −
∇2

B

µ◦σ
= −

∂B

∂t
+ ∇× (u × B) (23)

⇒
∂B

∂t
= ∇× (u × B) + η∇2

B (24)

where η = 1

µ◦σ
is the magnetic diffusivity. The first term in the magnetic induction

equation gives the interaction of the velocity field and the magnetic field. It provides
an insight into the buildup and breakdown of magnetic field as a consequence of the
motion of the conducting fluid. The second term in (17) relates to the rate of decay of
magnetic field due to Ohmic dissipation. Mechanical energy from the rotating motion
is transferred and stored into the magnetic field. Ohmic dissipation drains this energy
by transferring it to heat. Thus, to counteract the energy loss, the mechanical energy
of the conducting fluid needs to be balanced with Ohmic dissipation. Once this is
achieved the magnetic field may settle to a constant value, just like homopolar disc
dynamo example, or it may behave completely irregularly. Furthermore, one can assign
a Reynolds number to any rotating body exhibiting dynamo action. Reynolds number
is defined as the ratio of the rate of buildup of field to the rate of decay of the magnetic
field [2].

Rm ≡
∇× (u × B)

η∇2B
∼

u◦l

η
(25)

where u◦ is the velocity scale and l is the characteristic length scale of the velocity
field. For any self-sustained dynamo, the Renolds number has to be greater than 1. Off
course, otherwise the decay term would dominate and the dynamo will not sustain for
a long time. The velocity length scale for Earth is ∼ 10 km per year [3]; with thermal
convection providing sufficient inertial effect to balance the dissipative viscous effect,
the Earth has been able to maintain a relatively steady magnetic field over its history.

The magnetic induction equation has not been solved in a closed form. The reason
behind this is lack of solid experimental data at two interfaces surrounding the outer
core - the inner core and the mantle. Nevertheless, the magnetic induction equation
can be studied in the realm of few limiting cases which yield valuable insight into the
physical process under study.

7



5.1 Frozen-in Fields

For the case of infinite conductivity,

lim
σ→∞

∇2
B

σµ◦

= 0 then (26)

⇒
∂B

∂t
= ∇× (u × B) (27)

it can be shown that there is no induced Emf in a perfect conductor moving in a magnetic
field [2].

Figure 7: Geometrical arrangement for the frozen-in field theorem proof with surface S bounded by
L. n̂ is a unit vector normal to the surface [2].

Proof :
Consider a surface S bounded by curve L (see fig. 7). Then the flux through the

surface is,

∫

S

(

∂B

∂t
· n̂

)

da =

∫

S

[∇× (u × B) · n̂] da (28)

= −

∫

L

B · (u × dl) by Stokes’ theorem (29)

0 =

∫

S

(

∂B

∂t
· n̂

)

da +

∫

L

B · (u × dl) (30)

=
d

dt

∫

S

(B · n̂)da = Φ (31)

(32)

Now, from Faraday’s law E = −dΦ

dt
= 0 since Φ = 0. Therefore, no change in internal

magnetic field of the conductor occurs, as there is no induced Emf .

5.2 Stationary Fluid

A stationary fluid with u = 0 cannot sustain any dynamo action [2]. Considering the
same surface S, any current distribution J(r, t) and the associated magnetic field B(r, t)
confined to a region with volume V will decay due to Ohmic dissipation.

Proof :
With zero fluid velocity, the magnetic induction equation becomes a simple diffusion

equation
∂B

∂t
= η∇2

B (33)

Also, with the assumption that the external region outside V acts as an insulator with

J = σE = 0 ⇒ ∇× B = 0
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and

[B] = 0 on S, that is all components of B are continuous (34)

Jsurf = 0 with no surface currents and (35)

B = O(r−3) as r → ∞ (36)

Solution to (33) can be obtained in natural decay modes [1],

B(r, t) = B
α(r) epαt (37)

where B
α(r) satisfies the conditions given in (33-36). Plugging B

α(r) in (33) yields,

∇2
B

α(r) =
pα

η
B

α(r) (38)

In the above it is apparent that pα is the eigenvalue and B
α(r) is the eigenfunction.

Then for t > 0,

B(r, t) =
∑

α

aαB
α(r) epαt (39)

Also, it can be shown that,

−pα =
η

∫

All Space
(∇× B

α)2dτ
∫

V
(Bα)2dτ

(40)

Since the right side is positive in (40), all eigenvalues are increasingly negative. There-
fore,

lim
t→∞

B(r, t) = lim
t→∞

B
α(r) epαt = 0 (41)

6 Kinematic Dynamo Model

Figure 8: A snapshot of the longitudinally averaged differential rotation and meridional circulation
in the outer core for the Glatzmaier & Roberts model. The figure shows streamlines of the merid-
ional circulation with solid contours representing counterclockwise fluid flow and broken contours
representing clockwise flow [2].

In a Kinematic dynamo model, it is assumed that the velocity field u(r, t) is known,
at least statistically, if any chaotic flow exists. Also, the back reaction of the induced
magnetic field on the velocity field, resulting in a distortion, is considered negligible.
This model certainly does not apply to the geodynamo because the magnetic-velocity
field interactions are not negligible, in actuality, and thus cannot be ignored. A model
that accounts for such interaction is the Turbulent dynamo model; it is discussed in
the following section. Nevertheless, the kinematic dynamo model offers deep insight
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Figure 9: Toriodal field generation by differential rotation [9].

into the problem of the geodynamo. The model is marred by computational difficulties
which could prove important for the understanding of MHD equations. Moreover, the
kinematic dynamo model has been studied for a long period and it has made possible
many numerical simulations closely modelling the geomagnetic field. Essentially, the
Kinematic model tests steady flow of the conducting fluid for magnetic instabilities [8],
assuming the same magnetic induction equation in (17). Important aspects of this model
are differential rotation and meridional circulation of the fluid (see fig. 8). Differential
rotation promotes large-scale axisymmetric toroidal fields, while meridional circulation
of fluid generates large-scale axisymmetric poloidal fields [9]. A combination of both
processes promotes fields resembling that of the Earth with westward drift (see fig. 9).

7 Turbulent Dynamo Model

If the correlation length scale of the fluid l◦ is very small relative to the global length
scale of fluid flow L◦, then the fluid is said to be turbulent [7].

l◦ ≪ L◦ (42)

In the turbulent dynamo model, only the averaged properties of the induced magnetic
field and the velocity field are considered. However, the behaviour of the mean-magnetic
field not only depends on the averaged velocity field but also the residual component of
it as well. This residual component arises due to random perturbations in the velocity
field, which may have originated due to the back reaction of the induced magnetic field
or due to the convective buoyancy of the fluid, making the fluid turbulent on length
scales l◦.

To explore this idea in more detail, lets consider a fluctuating field F . Then, the
statistical average or expectation value of an ensemble of identical systems can be defined
as F . Now, the field F is comprised of a mean and a residual component

F = F + F ′ (43)

where F ′ is the residual component. The basic condition for the applicability of this
model to any other model with turbulent effects is that the Reynolds relations must be
satisfied

F = F + F ′, F = F , F ′ = 0 (44)

F + G = F + F , FG = FG, FG′ = 0 (45)

where G represents another turbulent vector field. Averaging Maxwell’s equations and
Ohm’s law will yield,

∇× E = −
∂B

∂t
, ∇× B = µ◦J (46)

∇ · B = 0, J = σ(E + u × B + u′ × B
′) (47)
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The third term in the averaged Ohm’s law is very critical to the model of turbulent
dynamo and it is defined as the turbulent electromotive force E . To study E in more
detail, lets make the necessary substitutions by plugging

B = B + B
′, u = u + u

′ (48)

into the magnetic induction equation in (17) which yields [7],

∂B
′

∂t
−∇×(u×B

′)−∇×(u′×B
′)−η∇2

B
′ = −

∂B

∂t
+∇×(u×B)+∇×(u′×B)+η∇2

B

(49)
It turns out that in the above equation, B′ is a linear function of B,u,u′, in turn making
E a functional of these vector fields. Also, knowledge of B,u,u′ in the neighborhood of
a point of interest is sufficient to express E as a linear functional of B

E = u′ × B
′ = αB − β(∇× B) (50)

where α is a pseudo-scalar and β is a scalar and these both depend on u.

7.1 The α-Effect

Distortion of magnetic field lines due to cyclical or helical motion of the velocity field
produce a mean electromotive force with a component parallel to that of the mean mag-
netic field. This helical velocity field, as mentioned earlier, result from the convective
buoyancy of the fluid coupled with the coriolis force from the rotating body. From (50)
then,

E = αB

The value of α, which varies with latitude and has been found to be positive in the

Figure 10: Geometrical configuration of the α-effect [7].

northern hemisphere, can be estimated from the exponential growth of magnetic insta-
bility [10]. The reason why this effect is critical to turbulent Dynamo theory is because
fluid motions associated to this effect lead to the generation of large scale magnetic
fields. Fig. 10 displays the α-effect in an electrically conducting sphere. In the figure,
the conducting sphere is embedded in empty and insulating space. The magnetic field
B is composed of a toriodal Bt and a poloidal Bp component. The poloidal compo-
nent has it’s field lines in the meridional plane while the toroidal component encircles
the axis of symmetry. Any toroidal velocity field would be influenced by the poloidal
magnetic field and, as a result from Ohm’s law, a poloidal current Jp would emerge.
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Next, this toroidal current would produce a toriodal magnetic field, interaction of which
with any vertical component of velocity vector, would result in a toroidal current Jt.
This toroidal current is accompanied by an additional poloidal magnetic field which
reinforces the primary field. This is the α-effect.

8 Present Situation and Future Prospects

In the last decade or so, observations from satellites such as Magsat (1980) and Oersted
(1999) in conjunction with supercomputer 3D simulations have improved our knowledge
of geomagnetic field to a great extent [11]. As it has been noted, only 1% of the intense
field produced by the geodynamo extends beyond the mantle. Even for high precision
satellites it becomes really hard to monitor the conditions below the heavy mantle.
Nevertheless, these satellites have provided just enough information to reveal secular
variations on Earth’s surface at specific location such as North America, Siberia, and
the coast of Antarctica with high intensity fluctuations. Geomagnetic data provided by
Oersted has led to the discovery of reverse flux patches. With the aid of supercomputer
3D simulations, it has been speculated that the emergence of these reverse flux patches
hint at the onset of events leading to a spontaneous polarity reversal.

Although these 3D simulations are producing good results, they have not been able
to exactly model the conditions necessary to create Earth’s magnetic field due to limited
resolution. As a complement to computer based models, lab dynamos have just started
to model the geodynamo. However, lab dynamos lack thermal convection which, as
mentioned earlier, is a necessary condition for any dynamo action.

The task to precisely match Earth like conditions is achievable and not impossible.
Significant results using satellite imagery, computer simulations, and lab experiments,
can be obtained in the near future with advancements in scientific technology.
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