Physics of the Earth and Planetary Interiors, 42 (1986) 143-153
Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

The stochastic excitation of reversals in simple dynamos

o D. Crossley and O. Jensen

143

Geophysics Laboratory, Department of Geological Sciences, McGill University, 3450 University Street, Montreal, Quebec, H3A 2A7

(Canada)

J. Jacobs

(Gt. Britain)

(Received August 13, 1985; revision accepted October 7, 1985)

Crossley, D., Jensen, O. and Jacobs, J., 1986. The stochastic excitation of reversals in simple dynamos. Phys. Earth
Planet. Inter., 42; 143-153.

Several variations of the aw disc dynamo models are known to exhibit chaotic magnetic field behaviour typical of
non-linear, dissipative systems. Although these models demonstrate that geomagnetic reversals can be generated by
simplified dynamo equations, the behaviour of the magnetic field itself is generally too simple, showing especially an
absence of long polarity epochs in most of the models. We show that the addition of three varieties of stochastic
processes (Gaussian, flicker and brown noise) enriches the field evolution and can lead to ‘realistic palacomagnetic
behaviour. We argue that noise processes must be present in the actual fluid core and suggest, from a physical point of
view, a flicker noise stimulation of the dynamo. We find two features of the palacomagnetic record that would favour
the presence of noise in the dynamo process, namely the absence of a linear oscillation in field intensity between
reversals or, even if present, the absence of an increase in amplitude of this oscillation prior to a reversal. We also
consider the addition of a random component to the helicity driving function of the «> dynamo process and show that
various types of reversal can occur. Unfortunately, realistic field behaviour cannot be maintained over long time periods
due to the tendency for the magnitudes of the poloidal and toroidal fields to equilibrate during a polarity epoch.
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1. Introduction

Geomagnetic reversals have recently been at-
tributed to the inherent non-linear behaviour of
the equations governing magnetohydrodynamic in-
teractions in the Earth’s core (Chilingworth and
Holmes, 1980; Krause and Roberts, 1981). Al-
though examination of the full equations seems an
impossible task, the simple disc dynamo models
provide rewarding insights into the processes re-
sponsible for field generation by dynamo action
(Bullard, 1955). In particular, it has been shown
that reversals of the magnetic field appear on
integration of the simple disc dynamo equations
and are associated with chaotic behaviour,
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governed by the appearance of strange attractors
in the trajectory space of the equations (e.g., May,
1976). It is natural to consider whether geomag-
netic reversals have to be accepted simply as inde-
terminism in the governing equations; if so, this
situation would provide little physical insight into
the details of planetary magnetism and little com-
fort for those wrestling with the interpretation of
palacomagnetic results.

The equations describing simple dynamo mod-
els are known to exhibit instabilities with respect
to starting conditions and integration method, and
it has been shown that in common with other
systems (e.g., Sparrow, 1982) the existence of
strange attractors and chaotic behaviour is inher-
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ent in the equations. The precise initial conditions,
as well as numerical round-off error, are known to
affect the details of chaotic solutions and in all
physically realistic situations the addition of some
noise process (random or otherwise) must intrude
to influence the evolution of the system. The role
of noise has been considered by Crutchfield and
Hubermann (1980) for the one-dimensional
anharmonic oscillator and by Guckenheimer (1982)
for experimental data in general. For fluid motion
in the Earth’s core, and other similar problems
concerning planetary interiors, irregularities either
in material properties, physical or chemical
processes or fluid dynamical turbulence will pro-
vide an adequate source of noise.

The task then is to examine whether the essen-

tial behaviour of simple disc dynamo: models can:

be attributed to inherent chaos or to ‘external’
stimulation by a random component. This compo-
nent could be either internal to the core (such as a
fluctuation in a local background magnetic field or
in convective fluid velocity) or external (such as
fluctuations in electromagnetic or mechanical
mantle torques or a near surface event such as an
earthquake). We begin by reviewing Rikitake’s

(1958) dynamo and the single disc dynamo of

Robbins (1977) and argue that Robbins’ dynamo

is the most suitable candidate for the introduction

of a stochastic component. We show that integra-
tion error itself must stimulate reversals in the
chaotic regime of the Robbins dynamo. We then
stimulate this dynamo with white noise and ex-
amine its non-linear response by numerical meth-
ods and find that it is resonant at the frequency of
the primary oscillation, a result which is not
surprising and that probably applies to most disc
dynamos. Although this indicates that the nature
of the stochastic excitation within the resonant
band is irrelevant, general considerations favour a
fractal type of stimulation as proposed for the
Chandler Wobble (Jensen and Mansinha, 1984).
Various other simple dynamo models (Allan, 1962;
Krause and Roberts, 1981) are also examined from
the same point of view.

Finally we briefly examine the stochastic excita-
tion of the a* dynamo model proposed by Olson
(1983). Owing to different physical assumptions
about the field generation process, the response of

this model to stimulation through a helicity source
term is not masked by the linear oscillation as in
the disc dynamo models. Although we find the
model to have some undesirable features, such as
the requirement for frequent reversals to maintain
a necessary asymmetry between the poloidal and
toroidal fields, the connection of helicity with ther-
modynamics in the core gives added interest to
this approach.

2. Numerical excitation of chaotic dynamos
2.1. Rikitake’s dynamo

Rikitake’s double disc dynamo model is known

" to possess self reversals when the equations are

integrated numerically (Rikitake, 1958) and Cook
and Roberts (1970) demonstrated that the system
‘shows all the attributes of chaotic behaviour asso-
ciated with non-linear systems. In one interpreta-
tion of this model, the magnetic fields crossing the
two discs can be thought of as representing the
poloidal and toroidal fields of the Earth’s core
(Krause and Roberts, 1981); alternatively (Bul-
lard, 1955) the model could apply to two large
eddies in the outer core. The equations of motion
depend on two non-dimensional parameters, K
(related to the difference in angular velocities be-
tween the two discs) and g, the ohmic dissipation.
The trajectories (coil current plotted against the
angular velocity) oscillate from one stable point
(normal polarity) to the other (reversed polarity)
for all reasonable values of these parameters, al-
though in some parametric regimes the transition
is periodic while in others it is irregular.
Subsequently Ito (1980) found for each K value
a regime for p in which the transitions (reversals)
were highly irregular and non-stationary and sug-
gested that the Earth’s core would tend to this
‘minimum entropy’ regime. The stable points of
the Rikitake dynamo are, however, repulsive, i.e,
all trajectories which start arbitrarily close to the
stable points eventually spiral away, for every
value of (K, u), and the dynamo has no parameter
regime with a stable state. Therefore this model is
not a good candidate for additional stochastic
excitation, although later on we will consider a



modification of this dynamo, due to Allan (1962),
that incorporates viscous damping.

2.2. Robbins’ dynamo

The Robbins dynamo (Robbins, 1977) consists
of the original Bullard single disc, homopolar,
dynamo with an impedance between the brush and
coil and a shunt connected across the coil. This
modified disc dynamo is governed by the follow-
ing equations

w=R-—zy—vw
Z=wy—z (1)
y=o(z-y)

in which y is the current in the coil (velocity of the
fluid), z the current in the disc (horizontal temper-
ature distribution) and w the angular velocity of
the disc (vertical temperature distribution). The
non-dimensional parameters are R, the driving
torque (mechanical convective force, e.g., tempera-
ture gradient), », the bearing friction (viscous dis-
sipation) and o (the ratio of disc current decay
time to coil current decay time). The variables
were interpreted by Robbins according to the ther-
mal convection model of dynamo action and
should be re-assigned according to either gravita-
tionally driven convection or to other models as
appropriate.

Equations (1) involve three parameters, com-
pared to two in the Rikitake model, and the solu-
tions exhibit different behaviour in different regi-
mes of the parameter R. The solutions for increas-
ing values of R are defined below, with the
numerical values { } evaluated for »=10¢ =35, as
in Robbins’ paper:

Regime I: R<Ry=v {=1}
all solutions approach the zero field state (w, z,
y)=(R/v,0,0).

Regime II' Ry <R <R {=7.26175)
all solutions approach the stable points (‘cell’ solu-
tions) (w, z, y)=(1, + VR — v, + VR — v ) without
y(t) changing sign (no reversal).

Regime I1I: R, <R < R_{=14.455}
as Regime II but y(7) can change sign (reversal).

Regime IV: R, . <R<R_.=ov(o+r+3)/(o
—v—1) {=15.0}
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this is the subcritical regime where the number of
oscillations between reversals is irregular. Solu-
tions initially close to the stable points eventually
decay to the stable.points, whereas solutions ini-
tially far from the stable points reverse indefi-
nitely.

Regime V: R> R,
all solutions, even those beginning at the stable
points, become unstable and oscillate indefinitely
about the stable points.

In Regime IV, for R only slightly greater than
R, there can be a large number of oscillations
between ‘reversals’ and the reversal sequence ap-
pears locally to be highly non-stationary. Because
this best mimics the palaeofield behaviour, the
Robbins dynamo parameters are assumed to lie in
this regime. Unfortunately, unlike the Rikitake
dynamo (Ito, 1980), there does not appear to be a
‘minimum entropy’ condition for this dynamo
where one might, a priori, expect to find the
parameters.

To illustrate the effect of round-off error on the
solutions, we show in Fig. 1 three plots of y(¢) for
different integration error tolerances. The parame-
ters chosen were v =1, 6 =5 and R = 13 for Reg-
ime III in which the solutions are expected to
eventually decay to the stable points. A fourth
order Runge—-Kutta method was used with auto-
matic step size determined by the error tolerance,
using double precision arithmetic (on an IBM-PC
and a COMPAQ portable with 8087 co-processors).
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R =13 for three values of error tolerance (a) 1074 (b) 107 (¢)
10~ 8. The asterisks indicate where adjacent plots first differ in
time (increasing). The time step for plotting the variables is 0.1
units: .



146

It can be seen that as the error tolerance improves,
the trajectory departs after a time (denoted by the
asterisks) from the previous plot and the subse-
quent evolution after this time is quite different.
By induction, one can argue that, regardless of the
numerical accuracy of any particular intepration
scheme or the power of any computer, the even-
tual behaviour of any one realisation (including
reversals) of this type of dynamo is governed by
numerical inaccuracies. On the other hand, as the
initial part of each plot demonstrates, reversals
obviously do occur as a result of chaos in the
non-linear equations and are caused by more than
numerical approximations.

Figure 1 also illustrates other behaviour which
we shall note for future reference. In particular,
the time prior to a reversal is always preceded by a
growing instability of the primary oscillation, as
observed by Bullard (1978); we have never seen a
reversal of this, or any other unforced, dynamo
model that does not show this feature. Secondly,
once decaying oscillations begin they continue un-
til the stable solutions are obtained and there is no
subsequent reappearance of growth towards a re-
versal. At the present time we do not know if these
conditions are met by the actual geodynamo be-
cause of the limited palacomagnetic record, but in
principle these might be testable consequences.
Finally, we should note from this and previous
work that the concept of stationarity of the rever-
sal sequence is very hard to determine either ex-
perimentally or numerically: the former is plagued
by sampling and age determination problems, the
latter by the critical choice of parameters in the
simplified models.

3. Stochastic excitation of the driving torque

We now introduce an ‘external’ stochastic com-
ponent into the equations of motion to simulate
what we assume must be irregularities in the un-
derlying hydrodynamics of the Earth’s core. Under
some form of core convection, especially that due
to gravitational settling (e.g., Loper, 1978; Gub-
bins and Masters, 1979), one may readily imagine
clumps of denser or lighter fluid forming locally
and giving rise to small-scale irregularities in a
convective velocity field. This component would,

through the Lorentz force in the Navier—Stokes
equation, generate local irregularities in the mag-
netic field as well. Alternatively, perhaps the core
conductivity, due to compositional variations, can
vary locally thus affecting the balance of diffusive
to generated magnetic flux in the induction equa-
tion. Perhaps instead there is a change of condi-
tions at the core-mantle boundary due to
earthquakes or mantle torques. We shall lump all
these effects into a single driving term which has
pre-determined statistics and is inserted into the
equations of motion.

3.1. Robbins’ dynamo

For the Robbins dynamo, we modify eq. 1 by
allowing

R=R+r(1) (2)

where we consider r(¢) to be one of the three
processes illustrated in Fig. 2. To begin with we
choose a pseudo-random uncorrelated Gaussian
process (‘white noise’) which is stationary with
zero mean and specified variance o. This is in-
jected into the dynamo eq. 1 at uniform time
intervals d¢ (not necessarily coincident with the
elementary integration steps). Because of the ap-
proximately uniform sample spectrum of the noise
process (the true power spectrum is equal to the
variance of the noise), the amount of power de-
livered to the dynamo by this process is linearly
proportional to the interval dr.
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Fig. 2. Three random processes (a) Gaussian pseudo-white
noise (b) flicker noise (¢) brown noise (random walk) each with
200 samples per division (dt = 0.1). The uniform random num-
ber generator was re-seeded at the beginning of each trace to a
value of 0.1. The flicker noise sequence repeats after 224
samples or about 8400 lines like (b).
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In Fig. 3 we show four examples of the dynamo
in Regime III for different combinations of R and
0,. The integrations are begun at the stable points
where they would remain throughout in the ab-
sence of excitation. One can see in Fig. 3(a) a long
sequence of one polarity with varying amounts of
stimulation, including growing and decaying fields
without reversals, followed by a burst of reversal
activity in the middle of the sequence. Figure 3(b)
demonstrates the effect of decreasing R and in-
creasing the excitation, and shows how isolated
polarity excursions can occur both with and
without long term changes of polarity. Again,
however, as for the chaotic regime V' the reversals
are initiated by growing instability in the primary
oscillation.

More extreme examples of excitation are shown
in Fig. 3(c) and (d) where we have decreased R
and increased o, (in (2)) to maintain a value of
R +0,=R,_. One can see that as R is decreased
the oscillations and reversals become more irregu-
lar and more frequent and in particular the be-
haviour prior to a reversal loses the characteristic
of a gradual build-up of amplitude. At the level of
Fig. 3(d), the random part of R is almost 100% of
the mean, which may or may not be a drastic
fluctuation in driving torque for the geodynamo
(depending on one’s notion of how important
turbulent behaviour may be). Nonetheless, it is
clear that with the addition of white noise excita-
tion, the Robbins dynamo now exhibits a wider
range of behaviour than a purely chaotic dynamo
and with a much greater range of R than previ-
ously assumed. Other tests have shown that for
very modest levels of noise excitation the trajecto-
ries are indistinguishable from those in a purely
chaotic dynamo, as expected.

Owing to the fast oscillation in the Robbins
dynamo, even for strongly random excitation, we
have investigated the non-linear response of the
dynamo using sinusoidal excitation, R = R
+ A sin wt, similar to the periodic forcing consid-
ered by Chilingworth and Holmes (1980). An ini-

Fig. 3. Plots of y(t) for Robbins’ dynamo (a) R =14, o, =1 (b)
R=13, 0,=2(c)R=11, 6, =4 (d) R=8, o,=7; error toler-
ance of 1073, other parameters as Fig. 1. The times scale
applies to only the first trace of each plot, for subsequent traces
add 200 per line.
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Fig. 4. Response (mean deviation of y(¢) from stable point) of
the Robbins” dynamo to sinusoidal excitation for five values of
A (0.2 to 1.0); other values as for Fig. 3(b). The vertical line at
4.17 rad is the theoretical linearised resonance frequency. The
horizontal dashed line shows the approximate response ampli-
tude for the onset of reversals; amplitudes beyond this value
are less dependable than those below it.

T T 0,
4.50 4.75 5.00

8
oo 3.25

tial trial with a sweep sinusoid indicated that the
fast oscillation was sensitive to angular frequencies
in the range 3-5 rad per unit time and a detailed
numerical search was made of the dynamo re-
sponse (measured by the mean deviation of y(¢)
from its initial value achieved in 200 time units)
for various values of 4 for R =13 (Fig. 4). The
theoretical linearised response can be obtained
from (1) by simple perturbation theory, giving the
resonant frequencies as the roots of the character-
istic equation
N+(o+v+1)NP+(R+0r)A+20(R—»)=0
(3)
For the values in Fig. 3(a) we find that the imagin-
ary part of A =4.17 which, as indicated in Fig. 4,
is in fair agreement with the peak of the response
of the lowest (0.2) amplitude value for 4. As is
typical of non-linear systems, the resonant
frequency is amplitude dependent and in this case
moves to lower values as the excitation increases.
The Robbins dynamo is clearly responsive to fre-
quencies only in a narrow range about the value
4.0 and this accounts for the persistence of the fast
(linear) oscillation in all the trajectories. Although
we are reluctant to interpret the time axis of Fig. 3
(and the other similar plots in this paper) geo-

physically, if one believes the dynamo has ampli-
tude fluctuations of ~ 8000 y (McFadden, 1984),
then this period might be assigned to the linear
oscillation. Each division of the time axis (20
units) would then be approximately 13 cycles or
100000 y so each line would be about 1 Ma.

One of the features of white noise excitation is
that it is uncorrelated. This can lead to unphysical
requirements in the dynamical system, especially
when there are very large and rapid excursions in
driving torque. An alternative model for the noise
inherent in physical systems, which has become
fashionable due to the work of Mandlebrot (1983),
is that of self-similar or ‘fractal’, ‘one-over-f’ noise.
Here, we shall call this stochastic process ‘flicker
noise’ because it is analogous to the phenomenon
of that name in solid-state electronic systems which
dominates all other sources of noise at very low
frequencies. Flicker noise is correlated over all
times with a magnitude that decreases as the corre-
lation interval increases such that the process ide-
ally possesses a 1 /f power spectrum. Flicker noise
is properly stationary if low-frequency limited; it
is, in fact, that self-similar or fractal random se-
quence which possesses the highest degree of self-
correlation while being stationary.

Physically, flicker noise allows us to describe a
random dynamo which has the longest possible
memory and the widest possible spatial correlation
while not evolving through geological time. That
is, we shall demand that those parameters which
define the deterministic component of the dynamo
and the statistical measures of the randomness
inherent in the dynamo (the variance and correla-
tion measures) remain fixed over the duration of
our simulation or observation. Though the search
for memory in the palaeomagnetic behaviour
(magnetic field components) has been elusive (Mc-
Fadden, 1984), temporal correlation as a property
of an excitation process introduces a more subtle
memory characteristic.

To demonstrate the effect of self-correlation in
the excitation of a driven dynamo, we show three
examples of Robbins’ dynamo forced by flicker
noise (Fig. 5). Before discussing the results of these
simulations, however, it is worthwhile to note the
level of excitation required in comparison to that
of white noise. The theoretical power spectra of



frequency band-limited white noise, P,(f), and of
flicker noise, P,( f), are given by

P(f)=0i/2fy
P (f)=03/2In(fn/fL)1f] , 4

where o2, and o7 are the variances of the two

processes. The sharp lower, f,, and upper, fy,
band-width cutoff frequencies are determined in
these simulations by

fn=1/2dr

fo=1/T (5)
where dt is the temporal sampling interval and 7'
the duration of the repetition cycle of the simu-
lated flicker noise. For the simulations presented
here, T= 1.7 X 107 dt. To balance the flicker power
density at any frequency f with the equivalent
white power density at the same frequency, we
require that

6,/0y = [(f/fN) ln(fN/fL)]1/2 (6)

where, for f=0.66 (the fast oscillation) and df =
0.1, we find 0,/0, = 1.5. Thus we use a standard
deviation o, = 3.0 for R = 13 to compare with Fig.
3(b) for three different seed values of the random
number generator.

It can be seen that the first trace in Fig. 5 (using
the flicker noise sequence in Fig. 2) yields no
reversals due to the level of excitation being gener-
ally lower than the mean. The second trace shows
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Fig. 5. Plot of y(r) for Robbins’ dynamo with flicker noise (a)
seed = 0.1 (b) seed = 0.2 (c) seed = 0.3 for R =13, o6, =3. The
traces may be regarded as part of the same magnetic field
sequence at different ‘epochs’.
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many reversals from a flicker noise sequence (not
shown) that is persistently above the mean, while
the third trace is somewhere between the other two
in response. If this model were correct, one might
expect to find weak evidence of correlation in the
reversal record, decreasing with the length of time
considered. It is also clear that despite the seeming
length of the numerical ‘polarity epochs’, this noise
process is stationary with zero bias, a statistical
property of the palacomagnetic record that has
been debated for some time. On the basis of these
disc dynamo models, however, we have to admit
that the dominance of the fast oscillation clearly
masks the distinction between the noise processes
discussed so far.

Finally, an example of the Robbins dynamo
with ‘brown noise’ excitation (Fig. 2) is shown in
Fig. 6. This type of process, known also as a
random walk, differs from flicker noise in being
non-stationary (as well as highly correlated) and
provides magnetic field response similar to the
flicker noise process. Owing to the very long corre-
lation lengths possible, the excitation could wander
quite far from the mean (R) for considerable
periods of time, thus emphasising any tendency
for the reversals to appears. as clusters in time. In
retrospect, Robbins’ dynamo is an ideal model for
stochastic excitation because of the transition from
stable to unstable regimes in the forcing parameter
R in the governing equations.

20 b K] ] T 1bo 120 130 160 ) 2o
ime

Fig. 6. Plot of y(¢) for Robbins’ dynamo with the brown noise
excitation beginning as in Fig. 2. Unlike Fig. 5, the three traces
form a continuous sequence.
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3.2. Allan’s dynamo

We have modified Rikitake’s dynamo by the
device proposed by Allan (1962) of introducing
viscous damping into the equation governing the
rotation rate. After many trials, we found that the
interplay of excitation and damping does not yield
such a satisfactory result as for Robbins’ dynamo
because the parameters have to be very finely
balanced to produce a result which is noticeably
different from the unforced Rikitake dynamo.

3.3. Krause and Roberts’ dynamo

The simplified dynamo presented by Krause
and Roberts (1981) was derived directly from the
basic equations of magnetohydrodynamics rather
than as a derivative of the homopolar models.
Quite remarkably, by reducing the number of free
parameters to a minimum (i.e., one), the equations
of motion obtained by Krause and Roberts

P=T-P
T=QP—-T (7)
Q=x*(1—-PT)- L

are almost identical to Robbins’ dynamo (1) with
o=1and (P, 7, Q) replacing (y, z, w). Pand T
are interpreted to be the poloidal and toroidal
components of the main field, respectively. The
only significant difference is the driving term x? in
the third equation of (7) which in Robbins dy-
namo does not modify the product PT. Note we
have added a viscous dissipation term in the third
equation of (7) to bring it in line with Robbins’
and Allan’s dynamos, as well as at the suggestion
of Krause and Roberts themselves. The single

parameter
Tm:
KP=— (8)

rot

where 7., is the decay time of the magnetic field,
and 7, is the regeneration time for the differential
rotation, governs the amount of mechanical
forcing. Krause and Roberts (1981) commented
that for the values k2 = 0.1 and 2 = 1.0 this model
gives overly simple field behaviour, in particular
allowing too little time between reversals com-
pared to the long polarity epochs of the
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Fig. 7. Krause and Roberts’ dynamo for x> = 4 with (a) o, =4
=0(b)a,=20,8=0(c) 0, =2.0, B3=0.02.

palaecomagnetic field. It has been found by experi-
mentation, however, that the above values chosen
for k? do not typify all the interesting behaviour of
this model. Figure 7 shows the situation for k2 = 4
for (a) no excitation (b) excitation but no damping
and (c) excitation and damping. The results for the
unforced behaviour are, not unexpectedly, strongly
reminiscent of Robbins’ dynamo. As for Allan’s
dynamo, while its behaviour can be made more
‘erratic’ by stochastic forcing, the results are very
dependent on the choice of parameters.

4. Stochastic excitation of Olson’s a? dynamo

In contrast to the previous models which have
been aw dynamos, we now consider an example of
the o class of dynamos, in particular the model
proposed by Olson (1983). In this model the mag-
netic field evolution is again derived from the
induction equation, but with an alpha factor con-
trolling the generation of the Lorentz force from
the main field components. In non-dimensional
variables the resulting equations are

P=—-P—aT

T=—-aP-T 9)
a=[2/(P*+T?)|T

where P and T are the main poloidal and toroidal

fields and a(t) is the field regeneration parameter.
The third equation is the important one in which



the « effect is derived from I'(z), a source term
representing the helicity of the velocity field. Ol-
son (1983) discussed the evolution of (9) when
I'(¢) is given simple forms such as a permanent or
a transient change from +1 to —1 with the initial
conditions

P(0)=1
T(0) = —(1+8) (10)

where § is the initial toroidal field anomaly. Olson
(1983) showed (a) after a sign change in I'(z) there
can be a change of sign either in P or T separately
(component reversal) or together (full reversal) or
a fluctuation in amplitude of P or T (excursion)
and (b) that the time scales for these changes
seems consistent with the observations (though
considerably shorter than the free ohmic decay
time). Further, Olson speculated that changes in
the sign of T, the helicity, may be caused by
imbalances in two competing energy sources in the
core, fluid turbulence associated with heat loss at
the core-mantle boundary and crystallisation at
the inner core boundary.

We now consider the consequences of taking
Olson’s (1983) model one stage further by replac-
ing I'(¢+) by a stochastic process which might tri-
gger the reversals. Unlike Robbins’ dynamo, in
which the driving torque could be replaced by a
steady part and a random part (eq. 2), reversals in
Olson’s model depend on TI'(¢) changing sign, so
the steady part of the helicity may be set to zero.
As we shall see, this has the unfortunate conse-
quence that the steady solutions of (9), i.e.

T,=V-T (11)

are considerably affected by the magnitude of
I'(¢#), so that fluctuations in helicity do not pro-
duce a ‘two-state’ mode of operation as is the case
for fluctuations in mechanical torque in the disc
dynamos. A straightforward stability analysis of
(9) for constant I' confirms that the values (11) are
uniformly stable with no linear oscillation and
small departures of P, T from (11) decay as e~ %,
independent of T'. The response of this dynamo is
therefore more dependent on the forcing function
than was found for the chaotic dynamos.
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Fig. 8. Plot of (b) P(¢) and (¢) T(¢) for Olson's dynamo with
I'(¢) given by a flicker noise sequence (a) with standard devia-
tion 1.0, seed 0.3 (cf. Fig. 2). Trace (b) shows a component
reversal, a full reversal and an excursion at the asterisks,
respectively. Integration tolerance 1077, time step 0.1, flicker
noise added every 1.0 time units, anomaly § = 0.02. One time
unit is approximately 7300 y.

As an example of the above, we show in Fig. 8
the integration of (9) and (10) when I'(¢) is a
flicker noise sample, chosen to have several zero
crossings. The response of the P, T fields are
initially encouraging in that, although one field
component or the other more or less follows the
excitation in sign and magnitude, there are compo-
nent reversals, full reversals and excursions exactly
of the morphology described by Olson. Rather
surprisingly though, the model breaks down at
time 53.5 due to numerical problems. Closer in-
spection shows that two factors cause this to hap-
pen. The first is that the anomaly § in (10), which
represents some initial imbalance between the two
field strengths, quickly disappears as the record
progresses so that after the last reversal at time
21.5 (Fig. 8) the two fields evolve in parallel with
the magnitudes of P and T becoming closer. The
second, related, problem is that when either P or T
goes through zero (at a reversal), and they have
nearly identical magnitudes, a approaches infinity
and the model breaks down. This behaviour is
consistent with physical intuition that the poloidal
and toroidal fields should not both be zero at a
geomagnetic reversal.

Further insight into this behaviour can be found
from the simple step models of I'(z) presented by
Olson. Though he discussed the need for a non-zero
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anomaly, in the examples presented the integra-
tions were never carried far enough to demonstrate
the breakdown, as he was mostly concerned with
the field behaviour at the first reversal. We have
examined a simple repetitive telegraph signal I'(7)
which consists of the value +1 for time z, fol-
lowed by a — 1 for a (dimensionless) time 1.0. As
t, increases the anomaly decays until a reversal
where a small anomaly can be generated by the
numerical integration scheme as the reversal oc-
curs. On our computer, when ¢, > 5, the anomaly
|P|—|T| decays into the numerical round-off
(~ 107 '®). Therefore all integrations in which the
field components remain of one polarity for longer
than 5 time units inevitably follow the same fate as
in Fig. 8, regardless of the type of helicity func-
tion, stochastic or otherwise. Therefore this dy-
namo model cannot represent, in the form pre-
sented by Olson, a description of the field over
long periods of time. Using Olson’s estimate of the
time scales, 5 units here is equivalent to approxi-
mately 36000 y.

One way to remedy the situation is to inject an
asymmetry between the P and T fields in (9) so
that at a reversal the weaker field can reverse while
the stronger does not. We shall not pursue this
issue as 1ideally such an asymmetry should be
present in the basic equations, rather than being
added arbitrarily to (9) as a numerical after-
thought. Nevertheless, our experience with Olson’s
model suggests that realistic palacomagnetic mod-
els may be found that have a strong physical
connection with core processes. :

5. Discussion

One cannot, on the basis of the examples shown
here, decide a priori whether the palacomagnetic
results favour a chaotic dynamo or a ‘noisy dy-
namo’, or indeed some combination of the two. It
is evident, however, that our model is reminiscent
of the empirical models of Cox (e.g., Cox, 1981) in
that we also propose a physically-derived stochas-
tic process to trigger the reversals. We also face the
same difficulties in proposing realistic tests as to
whether our model is consistent with observation.
Until the uncertainties due to palacomagnetic

sampling and age determination are reduced, the
statistics of the reversals will remain vague enough
to allow several possibilities, as at present. How-
ever, some advantage has been gained by demon-
strating that a stochastic excitation can either add
to or replace the excursions of the magnetic field
attributed to non-linear behaviour of the equations
of motion. Additionally we have provided a simple
mathematical mechanism for giving a complicated
polarity record while retaining the attractive sim-
plicity of the disc dynamo models.
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