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Severalvariationsof the a~disc dynamomodels areknown to exhibit chaotic magneticfield behaviourtypical of
non-linear,dissipativesystems.Although these modelsdemonstratethat geomagneticreversalscan be generatedby
simplified dynamoequations,thebehaviourof themagneticfield itself is generallytoo simple, showing especiallyan
absenceof long polarity epochsin most of the models.We show that the addition of three varieties of stochastic
processes(Gaussian,flicker and brown noise)enrichesthe field evolution and can lead to realistic palaeomagnetic
behaviour.We arguethat noiseprocessesmustbepresentin theactualfluid core andsuggest,from a physicalpoint of
view, a flicker noisestimulationof thedynamo.We find two featuresof the palaeomagneticrecordthat would favour
the presenceof noisein the dynamoprocess,namely the absenceof a linear oscillation in field intensity between
reversalsor, even if present, the absenceof an increasein amplitudeof this oscillation prior to a reversal. We also
considertheadditionof a randomcomponentto thehelicity driving functionof the ~2 dynamoprocessandshowthat
varioustypesof reversalcanoccur.Unfortunately,realisticfield behaviourcannotbemaintainedoverlong time periods
dueto thetendencyfor the magnitudesof thepoloidal andtoroidal fields to equilibrateduringa polarityepoch.

1. Introduction governedby the appearanceof strangeattractors
in the trajectoryspaceof the equations(e.g., May,

Geomagneticreversalshave recently been at- 1976). It is natural to considerwhethergeomag-
tributed to the inherent non-linear behaviourof netic reversalshaveto be acceptedsimply asinde-
theequationsgoverningmagnetohydrodynamicin- terminism in the governing equations; if so, this
teractionsin the Earth’s core (Chilingworth and situationwould providelittle physicalinsight into
Holmes, 1980; Krause and Roberts,1981). Al- the detailsof planetarymagnetismandlittle corn-
thoughexaminationof the full equationsseemsan fort for thosewrestlingwith the interpretationof
impossible task, the simple disc dynamomddels palaeomagneticresults.
provide rewardinginsights into the processesre- The equationsdescribingsimpledynamomod-
sponsiblefor field generationby dynamoaction els are known to exhibit instabilitieswith respect
(Bullard, 1955). In particular, it has beenshown to starting conditionsandintegrationmethod,and
that reversalsof the magnetic field appear on it has been shown that in common with other
integration of the simple disc dynamoequations systems(e.g., Sparrow, 1982) the existence of
and are associated with chaotic behaviour, strangeattractorsandchaoticbehaviouris inher-
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ent in the equations.Thepreciseinitial conditions, this model to stimulation througha helicity source
as well as numericalround-offerror, are known to term is not maskedby the linear oscillationas in
affect the details of chaotic solutions and in all the disc dynamo models. Although we find the
physically realisticsituationsthe additionof some model to havesomeundesirablefeatures,such as
noiseprocess(randomor otherwise)must intrude the requirementfor frequentreversalsto maintain
to influencethe evolutionof the system.The role a necessaryasymmetrybetweenthe poloidal and
of noise has beenconsideredby Crutchfield and toroidal fields, the connectionof helicity with ther-
Hubermann (1980) for the one-dimensional modynamicsin the core gives addedinterest to
anharmonicoscillatorandby Guckenheimer(1982) this approach.
for experimentaldatain general.For fluid motion
in the Earth’s core, and other similar problems
concerningplanetaryinteriors,irregularitieseither 2. Numericalexcitation of chaoticdynamos
in material properties, physical or chemical
processesor fluid dynamicalturbulencewill pro- 2.1. Rikitake‘s dynamo
vide an adequatesourceof noise.

The task then is to examinewhether the essen- Rikitake’s doubledisc dynamomodel is known
tial behaviourof simpledisc dynamo’modelscan’ to possessself reversalswhen the equationsare
be attributed to inherent chaosor to ‘external’ integratednumerically(Rikitake, 1958) andCook
stimulationby a randomcomponent.This compo- and Roberts(1970)demonstratedthat the system
nentcould beeitherinternal to the core(suchas a ‘shows all the attributesof chaoticbehaviourasso-
fluctuationin a localbackgroundmagneticfield or ciatedwith non-linearsystems.In one interpreta-
in convectivefluid velocity) or external (suchas ‘ion of this model, the magneticfields crossingthe
fluctuations in electromagneticor mechanical two discs can be thought of as representingthe
mantletorquesor a nearsurfaceeventsuch asan poloidal and toroidal fields of the Earth’s core
earthquake).We begin by reviewing Rikitake’s (Krause and Roberts, 1981); alternatively (Bul-
(1958) dynamo and the single disc dynamo of, lard, 1955) the model could apply to two large
Robbins(1977)and argue that Robbins’ dynamo , eddiesin the outercore.The equationsof motion
is the mostsuitablecandidatefor theintroduction’ . dependon two non-dimensionalparameters,K
of a stochasticcomponent.We showthat integra- (relatedto the differencein angularvelocities be-
tion error itself must ‘stimulate reversalsin the tweenthe two discs)and it, the ohmic dissipation.
chaoticregimeof the Robbinsdynamo.We then The trajectories(coil current plotted against the
stimulatethis dynamo with white noise and ex- angular velocity) oscillate from one stable point
amineits non-linear responseby numericalmeth- (normal polarity) to the other (reversedpolarity)
ods andfind that it is resonantat the frequencyof for all reasonablevaluesof theseparameters,al-
the primary oscillation, a result which is not thoughin someparametricregimesthe transition
surprisingand that probablyapplies to most disc is periodicwhile in othersit is irregular.
dynamos.Although this indicatesthat the nature SubsequentlyIto (1980) found foreachK value
of the stochasticexcitation within the resonant a regimefor ~ain which the transitions(reversals)
bandis irrelevant,generalconsiderationsfavour a werehighly irregularandnon-stationaryand sug-
fractal type of stimulation as proposedfor the gestedthat the Earth’s core would tend to this
ChandlerWobble (Jensenand Mansinha,1984). ‘minimum entropy’ regime. The stablepoints of
Variousothersimpledynamomodels(Allan, 1962; the Rikitakedynamoare, however,repulsive, i.e.,
KrauseandRoberts,1981) arealsoexaminedfrom all trajectorieswhich start arbitrarily close to the
the samepoint of view, stable points eventually spiral away, for every

Finally we briefly examinethe stochasticexcita- valueof (K, p~,andthe dynamohasno parameter
tion of the a2 dynamomodel proposedby Olson regimewith a stablestate.Thereforethis model is
(1983). Owing to different physical assumptions not a good candidate for additional stochastic
aboutthefield generationprocess,the responseof excitation, although later on we will considera
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modification of this dynamo,due to Allan (1962), this is the subcriticalregime wherethe numberof
that incorporatesviscousdamping. oscillations between reversals is irregular. Solu-

tions initially closeto the stablepoints eventually

2.2. Robbins’dynamo decay to the stablepoints, whereassolutions ini-
tially far from the stable points reverseindefi-

The Robbinsdynamo(Robbins,1977) consists nitely.
of the original Bullard single disc, homopolar, RegimeV: R > R
dynamowith an impedancebetweenthebrushand all solutions, even those beginning at the stable
coil and a shuntconnectedacrossthe coil. This points, becomeunstableand oscillate indefinitely
modified disc dynamois governedby the follow- aboutthe stablepoints.
ing equations In Regime IV, for R only slightly greaterthan

~ there can be a large number of oscillations
= R — ZY — VW between‘reversals’ and the reversalsequenceap-

±= WY — z (1) pearslocally to be highly non-stationary.Because

p = a(z _.~) this best mimics the palaeofield behaviour, the
Robbinsdynamoparametersare assumedto lie in

in which y is thecurrentin the coil (velocity of the this regime. Unfortunately, unlike the Rikitake
fluid), z the currentin the disc(horizontal temper- dynamo(Ito, 1980),theredoesnot appearto be a
aturedistribution) and w the angular velocity of ‘minimum entropy’ condition for this dynamo
the disc (vertical temperaturedistribution). The where one might, a priori, expect to find the
non-dimensionalparametersare R, the driving parameters.
torque(mechanicalconvectiveforce, e.g.,tempera- To illustrate theeffect of round-off erroron the
ture gradient), v, the bearingfriction (viscousdis- solutions,we showin Fig. 1 threeplots of y(t) for
sipation) and a (the ratio of disc current decay differentintegrationerrortolerances.The parame-
time to coil current decay time). The variables terschosenwerev = 1, a = 5 and R = 13 for Reg-
were interpretedby Robbinsaccordingto the ther- ime III in which the solutions are expectedto
mal convection model of dynamo action and eventually decay to the stable points. A fourth
shouldbe re-assignedaccordingto eithergravita- order Runge—Kuttamethod was used with auto-
tionally driven convectionor to other models as matic step sizedeterminedby the error tolerance.
appropriate, usingdoubleprecisionarithmetic(on an IBM-PC

Equations(1) involve three parameters,corn- anda COMPAQportablewith 8087co-processors).
paredto two in the Rikitakemodel, andthe solu-
tions exhibit different behaviourin different regi-
mesof theparameterR.The solutionsfor increas-
ing values of R are defined below, with the
numericalvalues ( } evaluatedfor v = 1 a = 5, as ~>

in Robbins’paper:
Regimel: R<R

0=~ (=1}
all solutionsapproachthe zero field state (W, z,
y) = (R/v, 0,0).
all solutionsapproachthe stablepoints_(‘cell’solu-

RegimeII: R0<R <R~~{= 7.26175)
tions)(w,z, y) = (1, ±VR — v, ±‘/R — v) without ____________ _________________________
y(t) changingsign (no reversal). ~, ~ b ~5 n~ ~o ,~o ~

RegimeIII: ~ < R <R~~{= 14.455) Fig. 1. Plots of y(t) for Robbins’ dynamowith j’ = 1, a = 5,
R= 13 for threevaluesof error tolerance(a) iO’~(b) 106 (c)as Regime II but y(t) can changesign (reversal). 10 ~. The asterisksindicate whereadjacentplots first differ in

Regime IV: ~ < R <R~ av(a+ v + 3)/(a time (increasing).The time stepfor plotting thevariablesis 0.1

—v—i) {15.0) units..
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It canbe seenthatas the error toleranceimproves, through the Lorentz force in the Navier—Stokes
the trajectorydepartsafter a time(denotedby the equation,generatelocal irregularities in the mag-
asterisks)from the previousplot and the subse- netic field as well. Alternatively, perhapsthe core
quent evolutionafter this time is quite different, conductivity,dueto compositionalvariations,can
By induction,onecanarguethat, regardlessof the vary locally thusaffectingthe balanceof diffusive
numerical accuracyof any particular int4ration to generatedmagneticflux in the inductionequa-
schemeor the power of any computer,th~even- tion. Perhapsinstead thereis a changeof condi-
tual behaviourof any one realisation(including tions at the core—mantle boundary due to
reversals)of this type of dynamo is governedby earthquakesor mantle torques.We shall lump all
numericalinaccuracies.On the otherhand,as the theseeffectsinto a single driving term which has
initial part of each plot demonstrates,reversals pre-determinedstatistics and is insertedinto the
obviously do occur as a result of chaos in the equationsof motion.
non-linearequationsandare causedby morethan
numericalapproximations. 3.1. Robbins’dynamo

Figure i also illustratesotherbehaviourwhich For the Robbinsdynamo, we modify eq. i by
we shall note for future reference.In particular,

allowing
the timeprior to a reversalis alwaysprecededby a
growing instability of the primary oscillation, as R = i/~+r(t) (2)
observedby Bullard (i978); we havenever seena where we considerr(t) to be one of the three
reversalof this, or any other unforced, dynamo processesillustrated in Fig. 2. To begin with we
model that doesnot show this feature.Secondly, choose a pseudo-randomuncorrelatedGaussian
oncedecayingoscillationsbegin they continueUfl process(‘white noise’) which is stationarywith
til the stablesolutionsare obtainedandthereis no zero mean and specified variancea~.This is in-
subsequentreappearanceof growth towardsa re- jected into the dynamo eq. 1 at uniform time
versal.At thepresenttimewedo not know if these intervalsdt (not necessarilycoincident with the
conditionsare met by the actualgeodynamobe- elementaryintegrationsteps).Becauseof the ap-
causeof the limited palaeomagneticrecord, but in proximatelyuniform samplespectrumof the noise
principle thesemight be testableconsequences. process(the true power spectrumis equal to the
Finally, we should note from this and previous varianceof the noise), the amount of power de-
work that the conceptof stationarityof the rever- livered to the dynamoby this processis linearly
sal sequenceis very hard to determineeither ex- proportionalto the interval dt.
perimentallyor numerically:the formeris plagued
by samplingand agedeterminationproblems,the ________ _______

latter by the critical choice of parametersin the
simplified models.

3. Stochasticexcitation of the driving torque

We now introducean ‘external’stochasticcom-
ponent into the equationsof motion to simulate ________________________________________
what we assumemustbe irregularities in the un-
derlyinghydrodynamicsof the Earth’score.Under __________________________________________

~ b th th ~ ,~o ~o ,~ ~

someform of core convection,especiallythat due Tin.

to gravitationalsettling (e.g., Loper, 1978; Gub- Fig. 2. Three random processes(a) Gaussianpseudo-white

bins andMasters,1979), onemay readilyimagine noise(b) flickernoise(c) brownnoise(randomwalk) eachwith
200 samplesperdivision (di = 0.1).The uniformrandomnum-

clumpsof denseror lighter fluid forming locally ber generatorwas re-seededat thebeginningof eachtraceto a

and giving rise to small-scaleirregularities in a value of 0.1. The flicker noise sequencerepeatsafter 224
convectivevelocity field. This componentwould, samplesor about8400 lines like (b).
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In Fig. 3 we showfour examplesof thedynamo
in RegimeIII for differentcombinationsof R and

a1.The integrationsare begunat the stablepoints
where they would remain throughoutin the ab-

senceof excitation.Onecanseein Fig. 3(a) a long
sequenceof onepolarity with varying amountsof
stimulation,including growing anddecayingfields
without reversals,followed by a burst of reversal
activity in the middle of the sequence.Figure 3(b)
demonstratesthe effect of decreasingR and in-

____________________________________________ creasingthe excitation, and shows how isolated
~S d, eb ~ ~ ,~ ~bo

polarity excursions can occur both with and
(b) without long term changesof polarity. Again,

however,as for the chaoticregime V the reversals
are initiated by growing instability in the primary

oscillation.
More extremeexamplesof excitationare shown

in Fig. 3(c) and (d) where we havedecreased1k
and increaseda1 (in (2)) to maintain a value of
1k +~1= R~.One can seethat as R is decreased

the oscillationsand reversalsbecomemoreirregu-
lar and more frequent and in particular the be-
haviourprior to a reversalloses the characteristic
of a gradualbuild-upof amplitude.At the level of
Fig. 3(d), the randompart of R is almost 100% of

the mean, which may or may not be a drastic
fluctuation in driving torque for the geodynamo
(dependingon one’s notion of how important
turbulent behaviourmay be). Nonetheless,it is
clear that with the additionof white noiseexcita-
tion, the Robbins dynamo now exhibits a wider
rangeof behaviourthana purely chaoticdynamo
and with a much greaterrange of R than previ-
ously assumed.Other testshave shown that for
very modestlevels of noiseexcitationthe trajecto-
ries are indistinguishablefrom those in a purely

Cd) chaoticdynamo,as expected.
Owing to the fast oscillation in the Robbins

dynamo,even for strongly randomexcitation,we
have investigatedthe non-linear responseof the
dynamo using sinusoidal excitation, R = 1k
+A sin tat, similar to the periodicforcing consid-
eredby Chilingworth and Holmes(1980). An mi-
Fig. 3. Plots of y(t) for Robbins’dynamo(a) ~ = 14, a1 = 1(b)
‘)~=13, a1— 2 (c)i~=1l,a~=4(d) R=8, Gj= 7~error toler-
ance of iO’~,other parametersas Fig. 1. The times scale
appliesto only thefirst traceof eachplot, for subsequenttraces

________________________________________________ add 200 per line.
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physically, if one believesthe dynamohasampli-
tude fluctuationsof — 8000 y (McFadden,1984),
then this period might be assignedto the linear
oscillation. Each division of the time axis (20
units) would then be approximately13 cycles or
100000y so eachline would be about1 Ma.

Oneof the featuresof white noiseexcitationis
that it is uncorrelated.This canleadto unphysical
requirementsin the dynamicalsystem, especially
when thereare very largeandrapid excursionsin

1: ___________________________________________________ driving torque.An alternativemodel for the noise________________________________________0 2 inherent in physical systems, which has become
~C0 3:253:50 ~75 ~O0 025 ~ ~ ,:~ fashionabledue to thework of Mandlebrot(1983),

Excitation angular frequency

Fig. 4. Response(meandeviationof y(t) from stablepoint) of is thatof self-similaror ‘fractal’, ‘one-over-f’noise.
the Robbins’dynamoto sinusoidalexcitationfor five valuesof Here,we shall call this stochasticprocess‘flicker
A (0.2 to 1.0);othervaluesasfor Fig. 3(b). The verticalline at noise’ becauseit is analogousto the phenomenon
4.17 rad is the theoreticallinearisedresonancefrequency.The of that namein solid-stateelectronicsystemswhich
horizontal dashedline shows the approximateresponseampli- dominatesall othersourcesof noise at very low
tude for theonsetof reversals;amplitudesbeyond this value
areless dependablethan thosebelow it. frequencies.Flicker noise is correlatedover all

timeswith a magnitudethatdecreasesas thecorre-
lation interval increasessuchthat the processide-

tial trial with a sweepsinusoid indicatedthat the ally possessesa 1/f powerspectrum.Flicker noise
fast oscillationwassensitiveto angularfrequencies is properlystationaryif low-frequencylimited; it
in the range 3—5 rad perunit time and a detailed is, in fact, that self-similar or fractal random Se-
numerical search was made of the dynamo re- quencewhich possessesthe highestdegreeof self-
sponse(measuredby the meandeviation of y( t) correlationwhile being stationary.
from its initial value achievedin 200 time units) Physically, flicker noiseallows us to describea
for various values of A for 1k = 13 (Fig. 4). The random dynamowhich has the longest possible
theoretical linearised responsecan be obtained memoryandthewidestpossiblespatialcorrelation
from (1) by simpleperturbationtheory, giving the while not evolving through geological time. That
resonantfrequenciesas the roots of the character- is, we shall demandthat those parameterswhich
istic equation define thedeterministiccomponentof the dynamo
X3 +(a + v + 1)X2 +(R + av)X+ 2a(R— ~ 0 and the statistical measuresof the randomness

inherentin the dynamo(the varianceandcorrela-
(3) tion measures)remainfixed over the duration of

For thevaluesin Fig. 3(a)wefind that the imagin- our simulationor observation.Though the search
ary part of X = 4.17 which, as indicatedin Fig. 4, for memory in the palaeomagneticbehaviour
is in fair agreementwith the peakof the response (magneticfield components)hasbeenelusive(Mc-
of the lowest (0.2) amplitude value for A. As is Fadden,1984),temporalcorrelationas a property
typical of non-linear systems, the resonant of an excitationprocessintroducesa moresubtle
frequencyis amplitudedependentandin thiscase memorycharacteristic.
moves to lower valuesas the excitationincreases. To demonstratethe effect of self-correlationin
The Robbinsdynamo is clearly responsiveto fre- the excitationof a driven dynamo,we show three
quenciesonly in a narrow rangeabout the value examplesof Robbins’ dynamo forced by flicker
4.0 andthis accountsfor the persistenceof the fast noise(Fig. 5).Beforediscussingthe resultsof these
(linear) oscillation in all the trajectories.Although simulations,however,it is worthwhile to note the
we arereluctantto interpretthe timeaxis of Fig. 3 level of excitation requiredin comparisonto that
(and the other similar plots in this paper) geo- of white noise. The theoreticalpower spectraof
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frequencyband-limitedwhite noise,P1(f), andof many reversalsfrom a flicker noisesequence(not
flicker noise,P2(f), aregivenby shown) that is persistentlyabovethe mean, while

the third traceis somewherebetweentheother two
P1(1) = a~/2fN in response.If this model werecorrect,one might

P2 ( f) = a~/2ln( fN/fL) f I (4) expect to find weak evidenceof correlationin the
reversalrecord,decreasingwith the length of time

where a~,and a~are the variancesof the two cOnsidered.It is also clearthat despitethe seeming
processes.The sharp lower, fL, and upper, fN’ length of thenumerical‘polarity epochs’,this noise
band-width cutoff frequenciesare determinedin processis stationary with zero bias, a statistical
thesesimulationsby property of the palaeomagneticrecord that has

fN = 1/2dt beendebatedfor sometime. On the basis of these

IL = 1/T (5) disc dynamomodels, however, we haveto admit
that the dominanceof the fast oscillation clearly

wheredi is the temporalsamplinginterval and T masksthe distinction betweenthe noiseprocesses
the duration of the repetition cycle of the simu- discussedso far.
lated flicker noise. For the simulationspresented Finally, an exampleof the Robbins dynamo
here,T—~1.7 x iO~di. To balancethe flicker power with ‘brown noise’ excitation(Fig. 2) is shownin
density at any frequencyf with the equivalent Fig. 6. This type of process,known also as a
white power density at the same frequency, we randomwalk, differs from flicker noise in being
requirethat non-stationary(as well as highly correlated)and

= [(f/IN) ln( IN/fL)] 1/2 (6) provides magnetic field responsesimilar to the
flicker noiseprocess.Owing to the very longcorre-

where,for 1= 0.66 (the fast oscillation) and di lation lengthspossible,the excitationcould wander
0.1, we find a2/a1 1.5. Thus we use a standard quite far from the mean (1k) for considerable
deviationa2 = 3.0for 1k = 13 to comparewith Fig. periodsof time, thus emphasisingany tendency
3(b) for threedifferent seedvaluesof the random for the reversalsto appearsas clustersin time. In
numbergenerator. retrospect,Robbins’dynamois an idealmodel for

It canbe seenthat the first tracein Fig. 5 (using stochasticexcitationbecauseof thetransitionfrom
the flicker noise sequencein Fig. 2) yields no stableto unstableregimesin the forcingparameter
reversalsdueto the level of excitationbeing gener- R in the governingequations.
ally lower than the mean.The secondtraceshows

(5)

iS iS iS it (a to ic bc 5, dx, it it cli it bc So to So to ~bo

Fig. 5. Plot of y(t) for Robbins’dynamowith flicker noise(a)
seed= 0.1 (b) seed= 0.2 (c) seed 0.3 for R = 13, 01 = 3. The Fig. 6. Plotof y(t) for Robbins’dynamowith thebrown noise
tracesmay be regardedas part of the same magnetic field excitationbeginningas in Fig. 2. Unlike Fig. 5, thethreetraces
sequenceatdifferent ‘epochs’. form a Continuoussequence.
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(0>

3.2. Allan’s dynamo
We have modified Rikitake’s dynamo by the

device proposedby Allan (1962) of introducing
viscous damping into the equationgoverning the
rotation rate.After many trials, wefound that the
interplayof excitationanddampingdoesnot yield
such a satisfactoryresult as for Robbins’dynamo
becausethe parametershave to be very finely
balancedto producea result which is noticeably
different from theunforcedRikitakedynamo. ________________________________________

it ito i(a ito ito exo 350 ito ito slim
Time

3.3. KrauseandRoberts’dynamo Fig. 7. KrauseandRoberts’ dynamofor ~2 = 4 with (a) 02 = $
= 0 (b) 02 = 2.0, $ = 0 (c) 02 = 2.0, $ = 0.02.

The simplified dynamo presentedby Krause
and Roberts(1981) wasderiveddirectly from the
basic equationsof magnetohydrodynamicsrather palaeomagneticfield. It has beenfound by experi-
than as a derivative of the homopolar models. mentation,however,that the abovevalueschosen
Quite remarkably,by reducingthe numberof free for it

2 do not typify all the interestingbehaviourof
parametersto a minimum(i.e., one), the equations this model. Figure7 showsthe situationfor it2 = 4
of motion obtainedby KrauseandRoberts for (a) no excitation(b) excitationbut no damping

P = T— and(c) excitationanddamping.Theresultsfor theunforcedbehaviourare,not unexpectedly,strongly
T=~P—T (7)

reminiscentof Robbins’ dynamo. As for Allan’s
= K2(1 — PT) — dynarno,~while~its behaviourcan be made more

are almostidentical to Robbins’ dynamo(1) with ‘erratic’ by stochasticforcing, the resultsare very
a = I and (P, T, ~2)replacing(y, z, W). P and T dependenton thechoiceof parameters.
are interpretedto be the poloidal and toroidal
componentsof the main field, respectively.The
only significant differenceis the driving term it2 in 4. Stochasticexcitation of Olson’s a2 dynamo
the third equationof (7) which in Robbins dy-
namo doesnot modify the product PT. Note we In contrastto the previousmodelswhich have
haveaddeda viscousdissipationterm in the third beenatadynamos,we now consideranexampleof
equationof (7) to bring it in line with Robbins’ the a2 classof dynamos,in particular the model
andAllan’s dynamos,as well as at the suggestion proposedby Olson(1983). In this model the mag-
of Krause and Roberts themselves.The single netic field evolution is again derived from the

inductionequation,butwith an alpha factor con-parameter
trolling the generationof the Lorentz force from

2 Tmag
= (8) the main field components.In non-dimensional

Trot variablesthe resultingequationsare

where Tmag is the decaytime of the magneticfield, ~ = — — aT
andTrot is theregenerationtime for the differential

T=-aP—T (9)
rotation, governs the amount of mechanical
forcing. Krause and Roberts(1981) commented a = [2/(P2 + T2)}I’
that for thevaluesit2 = 0.1 and ,c2 = 1.0 this model
gives overly simple field behaviour, in particular whereP and T are the main poloidalandtoroidal
allowing too little time betweenreversals corn- fields anda(I) is the field regenerationparameter.
pared to the long polarity epochs of the The third equationis the importantone in which
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the a effect is derived from F(t), a sourceterm
representingthe helicity of the velocity field. 01-
son (1983) discussedthe evolution of (9) when
F(t) is given simpleformssuchas a permanentor
a transientchangefrom +1 to —1 with the initial

P(0)=1

T(0) = —(1 + 6) (10)

where6 is theinitial toroidal field anomaly.Olson
(1983)showed(a) after a signchangein F(t) there . ,, ~ ~ •b oS ,t it

canbe a changeof sign eitherin P or T separately
(componentreversal)or together(full reversal)or Fig. 8. Plotof (b) P( t) and(c) T( t) for Olson’sdynamowith

a fluctuation in amplitude of P or T (excursion) [‘(1) givenby a flicker noisesequence(a)with standarddevia-
tion 1.0, seed0.3 (cf. Fig. 2). Trace (b) shows a component

and (b) that the time scalesfor thesechanges
reversal, a full reversal and an excursion at the asterisks

seems consistentwith the observations(though respectively.Integration toleranceiO~, time step0.1, flicker

considerablyshorter than the free ohmic decay noiseaddedevery 1.0 time units, anomaly~ = 0.02. One time
time). Further,Olson speculatedthat changesin unit is approximately7300 y.

the sign of F, the helicity, may be causedby
imbalancesin two competingenergysourcesin the
core,fluid turbulenceassociatedwith heat loss at As an exampleof the above,we showin Fig. 8
the core—mantleboundaryand crystallisation at the integration of (9) and (10) when F(t) is a
the innercore boundary. flicker noise sample,chosento have severalzero

We now considerthe consequencesof taking crossings.The responseof the P, T fields are
Olson’s(1983) model one stagefurther by replac- initially encouragingin that, although one field
ing F(i) by a stochasticprocesswhich might tn- componentor the other more or less follows the
gger the reversals.Unlike Robbins’ dynamo, in excitationin sign andmagnitude,thereare compo-
which the driving torque could be replacedby a nentreversals,full reversalsandexcursionsexactly
steadypartanda randompart (eq. 2), reversalsin of the morphology describedby Olson. Rather
Olson’s model dependon F(i) changingsign, so surprisingly though, the model breaks down at
the steadypart of the helicity may be set to zero, time 53.5 due to numericalproblems.Closer in-
As we shall see, this has the unfortunateconse- spectionshowsthat two factors causethis to hap-
quencethat the steadysolutionsof (9), i.e. pen.The first is that the anomaly6 in (10), which

representssomeinitial imbalancebetweenthe two
a0= + 1: P0 = — T0 = field strengths,quickly disappearsas the record

a0= — 1: P0 = 7’ (11) progressesso that after the last reversal at time
21.5 (Fig. 8) the two fields evolvein parallelwith

are considerablyaffected by the magnitude of the magnitudesof P and T becomingcloser.The
F(t), so that fluctuations in helicity do not pro- second,related,problemis that wheneitherP or T
ducea ‘two-state’ modeof operationas is the case goes through zero (at a reversal),and they have
for fluctuations in mechanicaltorque in the disc nearlyidenticalmagnitudes,a approachesinfinity
dynamos.A straightforwardstability analysisof and the model breaks down. This behaviour is
(9) for constantF confirmsthat the values(11)are consistentwith physicalintuition that the poloidal
uniformly stable with no linear oscillation and and toroidal fields should not both be zero at a
small departuresof P, T from (11) decayas e 2> geomagneticreversal.
independentof F. The responseof this dynamois Furtherinsight into this behaviourcanbe found
thereforemoredependenton the forcing function from the simplestepmodelsof F(t) presentedby
than wasfound for the chaoticdynamos. Olson.Thoughhediscussedtheneedfor a non-zero
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anomaly, in the examplespresentedthe integra- samplingand agedeterminationare reduced,the
tions werenevercarriedfar enoughto demonstrate statisticsof the reversalswill remainvagueenough
the breakdown,as he was mostly concernedwith to allow severalpossibilities,as at present.How-
the field behaviourat the first reversal.We have ever, someadvantagehasbeengainedby demon-
examineda simplerepetitivetelegraphsignal F(i) strating that a stochasticexcitationcaneitheradd
which consistsof the value + 1 for time i0 fol- to or replacethe excursionsof the magneticfield
lowed by a — 1 for a (dimensionless)time 1.0. As attributedto non-linearbehaviourof the equations
i0 increasesthe anomalydecaysuntil a reversal of motion. Additionally wehaveprovideda simple
where a small anomaly can be generatedby the mathematicalmechanismfor giving a complicated
numerical integrationschemeas the reversal oc- polarity record while retaining the attractivesim-
curs. On our computer,when t~>5, the anomaly plicity of the disc dynamomodels.

I — T decays into the numerical round-off
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