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The driving force and geoid anomaly associated with the thermal structure of the oceanic plates are shown to be 
proportional to the first moment of the density structure with respect to depth and, hence, to each other. Both 
quantities exhibit the same functional dependence on age and this is given for two different thermal models. For the 
plate model the geoid anomaly and ridge driving force only increase slowly for ages greater than 40 m.y. in contrast 
to the half-space boundary layer model where a linear dependence on age holds for all ages. Isolation of the geoid 
anomaly related to the thermal structure of the plates would provide a direct measure of the magnitude of the ridge 
driving force. 

1. Introduct ion 

The difficulty of  dealing explicit ly with the 
mechanical properties of  the lithosphere has restrict- 
ed at tempts  to obtain the driving mechanism of  plate 
tectonics as part of  a coherent convective system. 
One approach that has been taken is to isolate the 
li thosphere or rigid mechanical boundary layer and 
consider a balance of  the resulting forces applied 
along its boundaries and over its base by  the rest of  
the system [ 1 - 3 ] .  The body forces that  are gener- 
ally included are those to which at tent ion is directed 
by  association with major features such as ridges and 
subducting slabs. This approach will only be fruitful 
provided that buoyancy forces distributed within the 
mantle outside the plates do not  make a significant 
contr ibut ion to maintaining 151ate motions.  The resist- 
ing forces associated with a return mass flow, i.e. 
shear stresses and non-hydrostat ic pressure forces, 
can be calculated using a consistent fluid mechanical 

model and included in the force balance [4]. This 
method is also useful in answering further ques- 
tions such as the conditions necessary to create new 
subduction zones now and in the past [5]. 

One o f  the important  driving terms in a force 
balance model  is that associated with excess eleva- 
t ion and lower densities at mid-ocean ridges. The 
ridge driving force has been discussed by a number 
of  authors [ 6 - 8 ] .  In particular, Lister [8] calcu- 
lated the force using a thermal boundary layer 
model  of  the plates. We present a brief derivation 
of  the ridge force below and obtain a simple expres- 
sion in terms of  the first moment  of  differences in 
density structure. It has also been shown recently 
that the geoid anomalies associated with compensated 
topography can be calculated to good approximation 
as due to the dipole moment  equivalent to the den- 
sity distribution [ 9 - 1 1 ] .  Hence the driving force and 
geoid anomaly associated with the thermal structure 
of  mid-ocean ridges are shown to be simply propor- 
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tional to one another. If  the latter can be obtained 
from satellite altimeter observations of the geoid the 
ridge driving force can be obtained directly. The age 
dependence of either variable is considered for two 
thermal models. In the case of the plate model the 
driving force increases only slowly for sea floor older 
than 40 m.y., in distinction to a half-space model in 
which the force continues to increase linearly with 
age. The two thermal models thus give rather differ- 
ent magnitudes and distributions for the ridge driving 
force. 

2. The driving force associated with mid-ocean ridges 

This force results from the fact that the excess 
elevation at ridge crests produces a pressure distribu- 
tion such that the pressure at any given depth above 
the level of compensation is greater than that under 
older ocean floor. At the compensation depth the 
effect of the excess elevation balances the effect of 
the lower densities due to higher temperatures under 
the ridge crest, providing a reference level on which 
pressures are constant. Calculations of the variation 
in mean depth as a function of age using models for 
the thermal structure explicitly assume that such a 
reference level exists. Justification for this is provided 
by the similarity of the depth versus age relation in 
different ocean basins [12], which suggests that the 
non-hydrostatic pressure, and also the shear stresses, 
acting at the base of the plate are small [13]. The 
driving force considered here is that due to the hy- 
drostatic pressure field alone when non-hydrostatic 
stresses are neglected. 

Fig. 1 illustrates the geometry used to derive the 
ridge pushing force. The density depends on position 
only between the top and bottom surfaces, z = h(x) 
and z = l(x). We consider the forces acting on the 
three bounding surfaces. The force produced by the 
horizontal component of  the normal stresses acting 
on the bottom boundary is: 

Ft = f P(x, z) t~ • [ds (1) 
z=l(x) 

whereP(x, z) is the pressure, fi is a unit vector normal 
to the boundary z = l(x) pointing inward, ds is an ele- 
ment of length along the boundary, and/ i s  a unit 
vector in the x-direction. From the geometry of 
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r j 

Fig. 1. Sketch of the geometry used to derive the ridge push- 
ing force. The densities referred to are: Pro, the mantle 
density; Pw, the density of seawater; p'(x, z), the laterally 
varying density produced by the temperature structure. 
Depths are measured downward from the ridge crest. 

Fig. 1 : 

t~ • [ = ~ z=l(x)  

Then equation (1) becomes: 

F1 = f P(x, z) dz 
z=l(x) 

In the region where the density is everywhere equal 
to Pm, and hence on z = l(x), the pressure is indepen- 
dent o fx  and depends only on the depth at which it 
is measured. The pressure on the boundary is: 

P(x, z) Iz=~(x) =e(0, z) = pwdwg + pmgZ 

where dw is the depth at the ridge crest and g is the 
gravitational acceleration. The force is given by: 

~ (x) 12 
Fx = P(O, z) dz = Pwgdwl + Ping ~ (2) 

o 

The force, F2, acting on the upper boundary can be 
derived in a similar fashion giving: 

h 2 
F2 = p wgdwh + p wg --f ( 3 ) 

The final force, F3,  exerted by pressures on the vertical 
bounding surface is given by: 

)(x) 
F3 = P(x, z) dz 

h(x) 



where" 

t(x) 
P(x, z) = pwgdw + Pmgl(x) - g / p(x, z') dz' 

Z 

so that: 

F3 = pwgdw(l - h) + Ping - -  
(/2 _ h 2 )  

1 1 

- g  f f p ' ( x . z ' ) d z ' d z  
h z 

The order of integration in the double integral can be 
exchanged to obtain a simpler expression for F3: 

173 = pwgdwq -. h) + Ping - -  
q2 _ h 2) 

2 

l 

-g f (z' h) p'(x,z')dz' 
h 

The force required at x to balance the resulting force 
pushing out from the ridge is: 

FR =F1 - F2 - F3 

1 

- "gh2 +gf(z' h) p'(x, dz' 
= ( P m  - -  Pw) - ~  - -  z ' )  

h 

(4) 

(s) 

When x is in the interior of the plate this force must 
be provided by internal stresses in the plate, but when 
x is on a plate boundary an external force is necessary 
to balance the ridge pushing force. The vertical tem- 
perature structure and hence the depth relative to the 
ridge, h(x), and the density structure, p'(x, z), depend 
only on the age of the plate. Hence we can replace x 
by the equivalent age in evaluating (5) and consider 
FR as a function of the age of the plate. 

The above simple derivation is possible because we 
assume that the density distribution, or rather the 
temperature structure, is independently known. This 
is obtained by assuming a given velocity distribution, 
in this case rigid plate motion. The complete prob- 
lem involves calculating the temperature structure 
and velocity field for chosen rheological properties 
and boundary conditions. The stress distribution, 
including non-hydrostatic terms, could then be ob- 
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tained. By making reasonable assumptions about the 
velocity and density distributions, and neglecting 
non-hydrostatic stresses, a first approximation to 
the ridge driving force can be obtained without ref- 
erence to material properties and boundary condi- 
tions on the rest of the system. 

3. A geoid anomaly over mid-ocean ridges 

Recent work [9-11 ] has shown that the geoid 
anomaly associated with locally compensated topog- 
raphy is given to a good approximation by the effect 
of a mass dipole equivalent to the compensating mass 
distribution. The geoid height at any distance from 
the ridge crest relative to that at the ridge crest would 
then be given by: 

N -  2~_a ~ z Ap(x, z) dz 
g ~' 

o 

3 / z  Ap(x, z) dz 
2fir 

o 

(6) 

where Ap(x, z) is the difference in density structure 
at x from that at the ridge crest, p is the mean density 
of the Earth, G is the gravitational constant and R is 
the Earth's radius. In the notation of Fig. 1 the geoid 
anomaly is: 

N -  2~-R ~(Prn - Pw) T + (z - h) o'(X. z) dz 
h (7) 

The above method of calculating the geoid anom- 
aly for locally compensated topography is an approx- 
imation. Its range of validity can be examined by con- 
sidering surface topography varying as h cos kx. This 
is equivalent to a surface density distribution ph cos 
kx which we suppose to be compensated by a surface 
density distribution of opposite sign concentrated at 
a depth d. The exact geoid anomaly associated with 
this locally compensated topography is: 

N = 2rrG- ph c ° s ( k x ) [ 1 -  exp(-kd) k (8) 

whereas the dipole approximation equivalent to using 
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Fig. 2. The ratio of expressions given by (8) and (9) as a func- 
tion of non-dimensional wave number, kd. The top scale gives 
the velocity equivalent to any value ofkd using equation (14) 
and the same physical parameters listed in the caption to 
Fig. 3. 

(6) is: 

2rrG 
N = - -  phd cos(kx) (9) 

g 

The ratio of  the expressions given by (8) and (9) is 
plotted in Fig. 2. It can be seen that the dipole 
approximation is a good one when kd < <  1. Hence in 
order for (7) to be valid the wavelengths associated 
with the density structure p '(x,  z) must be long com- 
pared to the plate thickness. Below it will be shown 
that this is the case for the thermal structure given 
by a plate model with moderate spreading velocities. 

4. A relation between driving force and geoid 
anomaly 

From (5) and (7) it can be seen that  the geoid 
anomaly ,N,  and the pushing force, FR, for the same- 
age sea floor are proportional to one another, the 
relation between them being: 

In particular the dependence o f F  R and N on age can 
be investigated together. We evaluate (5), and hence 
(7), for two different thermal models. In the plate 
model the thermal structure is calculated for a plate 
of  constant thickness with a constant temperature 

maintained along the bot tom boundary and on the 
side boundary beneath the ridge crest. The tempera- 
ture structure is then: 

oo 

- s i n ~ - ]  exp 13na (11) 
7 / n = l  / '/ 

with 

N = [(R 2 + n2r?) 1/: - R] , R = ua/2K 

and Tm is the bo t tom boundary temperature, a is the 
plate thickness, u the spreading velocity and K the 
thermal diffusivity (e.g. [12]). Here z is measured 
downward from the top of the plate. The equation of 
state for the density is taken to be: 

p(x, z) = pro{1 + a[T m - T(x, z)]} (12) 

where ~ is the volume expansion coefficient. Hence 
the geoid height over ocean floor of age t relative to 
that at the ridge is: 

3aPm j 
z IT m - r (ut ,  z)] dz 

N -  2~-R o 

O~PmTma2 [l _12 ~ (-1)n+l 
- 4~'R 7r2 n=~ ~ e x p ( - ~ ) ]  

(13) 

only terms of  first order in (aTm) being retained. The 
primary contribution comes from the term for n = 
1. This term has a Fourier transform: 

1 2/31a 
~r [exp(-/3a Ix I/a)] - x /~ /35  + k2a 2 

so that (h/a represents a characteristic wave number 
associated with the density structure. It was shown 
above that (6) is a good approximation to the geoid 
anomaly for kd < <  1. Here, with a choice o f d  = a/2 
for the mean depth of compensation, the requirement 
is that: 

kd = ~' X ~ =  rr2~ < <  1 (14) 
a 2 2ua 

This will be satisfied if the spreading velocity is suf- 
ficiently large. The velocity scale at the top of  Fig. 2 
gives the spreading velocities equivalent to the values 
ofkd on the bot tom axis. The criterion is satisfied for 
velocities of  I cm/yr  or greater. 

An alternative temperature structure is given by a 



half-space cooling model: 

Z 

T =Tm erf 2 @  (15) 

This solution is asymptotically equal to that for the 
plate model for small times. When applied to the cal- 
culation of depth versus age either of  the solutions 
(11) or (15) give good agreement for ages less than 
70 m.y. [12,14], but the temperature structure given 
by (11) also fits the variations in mean depth for 
older ocean floor [12]. Haxby and Turcotte [10] 
have given the geoid height relative to that at the 
ridge obtained from (15): 

N 3C~Pm 
- z I T  m - T(t, z ) ]  d z  

2~R o 

= - 3aPmTmKt- (16) 
TaR 

The ridge pushing force equivalent to (16) is: 

FR = gaPmTmKt (17) 

which is the result obtained by Lister [8]. The geoid 
heights relative to the ridge and the equivalent ridge 
force for both expressions (13) and (16) are plotted 
in Fig. 3 as a function of  age. For ages less than 40 
m.y. both solutions give the same linear dependence, 
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Fig. 3. The ridge driving force, and equivalent geoid anomaly 
associated with the thermal structure of the plate, given as a 
function of age. Physical parameters used to evaluate (13) 
and (17) are c~ = 3.3 X 10 -5 °C -1,a = 120 km, g = 8.0 X 
10 -7 m2/s, Tm= 1300°C, pm = 3.33 Mg/m 3, p = 5.53 Mg/ 
m 3, andR = 6378 km. 
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the slopes being: 

dN 
- -  = -0 .15  in per m. y 
dt 

dFR 
- 3.6 X 101° N/m perm.  y . (18) 

dt 

This linear relation continues for the half-space 
model, but for the plate model the geoid anomaly 
and ridge pushing force change much more slowly for 
ages greater than 40 m.y. At an age of  200 m.y. the 
plate model gives a total variation of  14.0 m and 
3.2 × 1012 N/m compared to 30.7 and 7.2 X 1012 
N/m for the half-space model. The maximum geoid 
anomaly produced by the plate model from (13) is: 

O~PmTm a2 
Nmax - (19) 

4FR 

or 14.58 m. The equivalent ridge pushing force is 
3.43 × 1012 N/re. 

5. Discussion 

It has been shown that the driving force and geoid 
anomaly associated with the excess elevation and 
density structure of  spreading ridges are simply pro- 
portional to one another. A simple physical explana- 
tion for this relation can be obtained by considering 
a mass column above a given depth as it moves away 
from the ridge. The plate cools, and the center of  
gravity of  the column increases in depth. The ridge 
pushing force can be obtained by equating the release 
in gravitational potential energy due to the movement 
of  the center of  gravity to the work done against the 
external force balancing the ridge pushing force. The 
geoid height, in the approximation considered, is 
proportional to the dipole moment of  the mass in the 
column. This is simply a product of  the mass of the 
column and the depth of  the center of  gravity. Both 
N and FR are proportional to changes in depth of the 
center of  gravity and hence are proportional to one 
another. 

The force required to balance the ridge pushing 
force is a function of  age only. In the interior of the 
plate this is provided by internal stresses within the 
plate. At a subducting plate boundary an external 
force is necessary whose magnitude depends on the 
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age of  the plate when it subducts. For  the plate 
model  the ridge pushing force varies increasingly 
slowly for ages greater than 40 m.y. Thus the magni- 
tude of  the force entered into a force balance on the 
plate is only sensitive to the age of  the subducting 
material when this is less than 40 m.y.  The above 
considerations primarily apply to a plate with a sim- 
ple spre~din~ history i.e. with no major reorientations 
in spreading direction. For  a plate with a complex 
spreading history the differential force, given by the 
derivative with respect to t o f  the expression for F R 
equiwlent  to (13), acting perpendicular to isochrons, 
must be summed over the plate. The total  force will 
still depend on the age of  the subducting material but 
its direction will no longer be simply oriented perpen- 
dicular to the present ridge. 

The geoid anomaly associated with the thermal 
structure of  the plates has the same age dependence 
as the ridge driving force. It can be seen that the way 
the geoid varies with age is more sensitive to the pres- 
ence of  a bo t tom boundary condit ion than variations 
in depth with a~e. At tempts  to extract this isostatic 
geoid anomaly from the total  geoid obtained from 
satellite altimeter measurements are still at an early 
stage [15], but  there are some indications that  it has 
the behavior predicted by  equation (13). If  this part 
of  the geoid can be successfully isolated it would pro- 
vide a direct measurement of  one of  the driving forces 
contributing to the balance of  forces on the plates. 
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