
WATER:

One of the most extraordinary substances known to man

http://eps.mcgill.ca/~courses/c220/

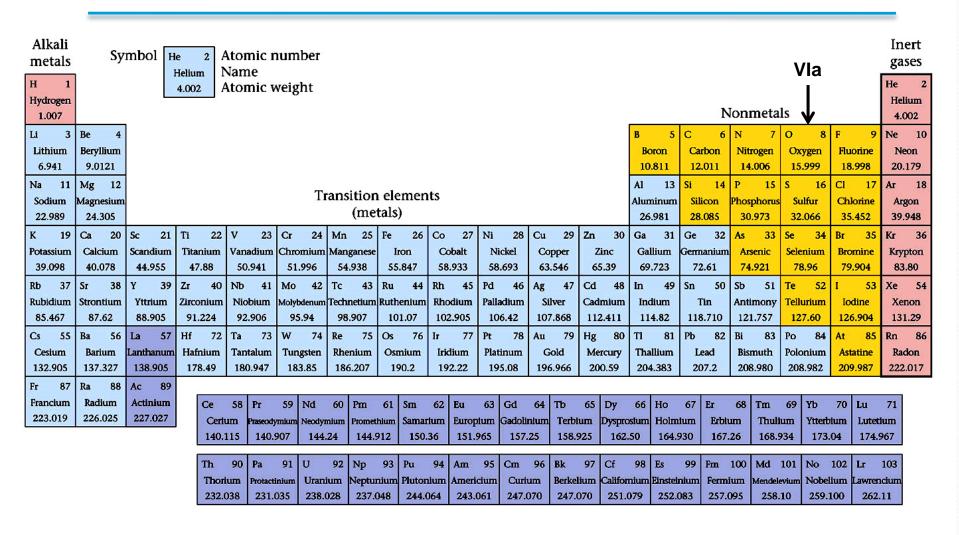
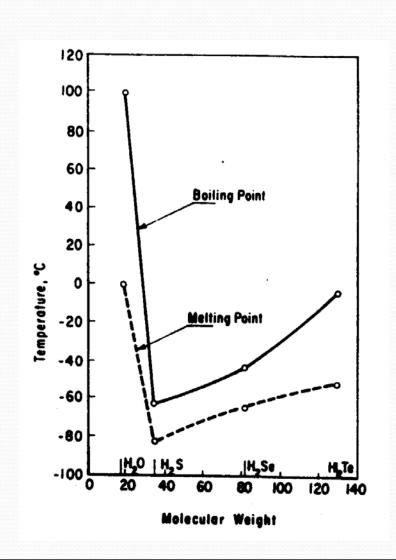
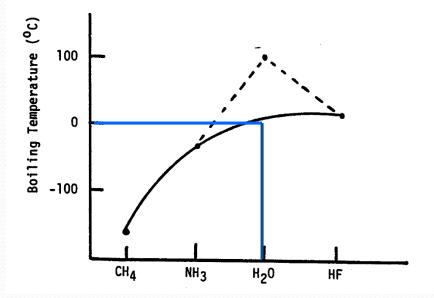
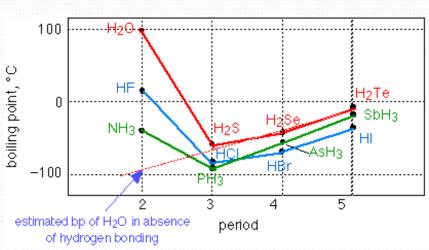

Isotopic composition of water

TABLE 2.11

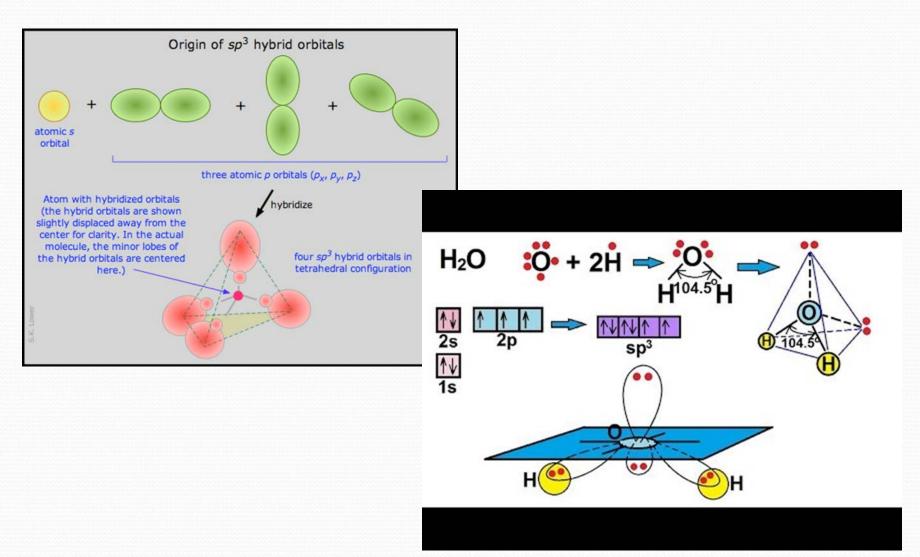
Composition of Water with Respect to the Different Forms of Water

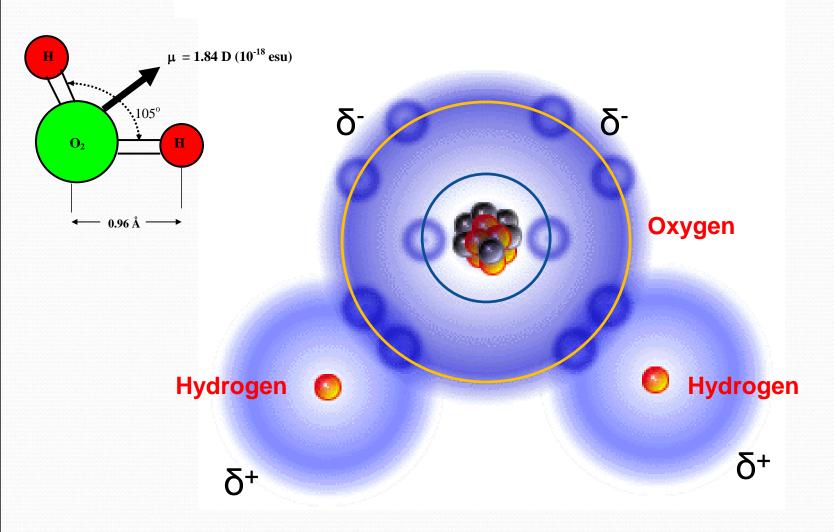

Water Molecule	Portion in Total Water	Portion in Heavy Water	Comparable Concentration	
¹ H ₂ ¹⁶ O	99.73	_		
¹ H ₂ ¹⁸ O	0.20	73.5	Mg	= 0.0521
¹ H ₂ ¹⁷ O	0.04	14.7	Ca	= 0.0103
1H2H16O	0.032	11.8	K	= 0.0100
1H2H18O	6 × 10 ⁻⁵	0.022	N	
1H2H17O	1×10^{-5}	0.003	Al	
² D ₂ ¹⁶ O	3×10^{-6}	0.001	P	
$^{2}D_{2}^{-18}O$	6×10^{-9}	2×10^{-6}	Hg	
2D ₂ 17O	1×10^{-9}	3×10^{-7}	Au	


Periodic table of the elements



WATER:

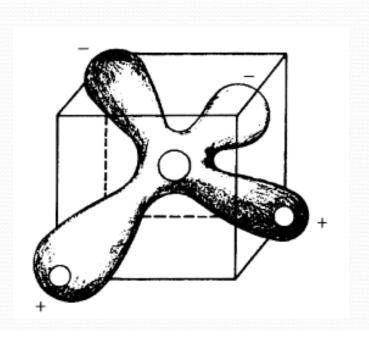
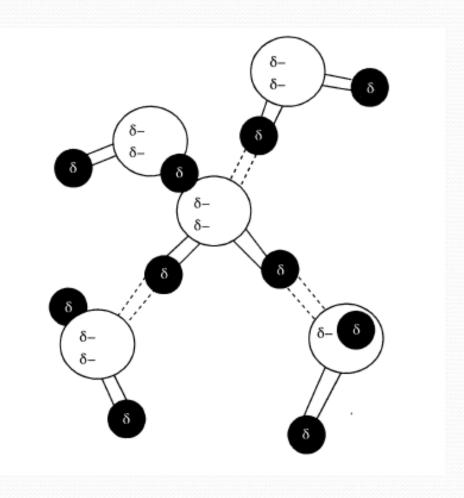

One of the most extraordinary substances known to man

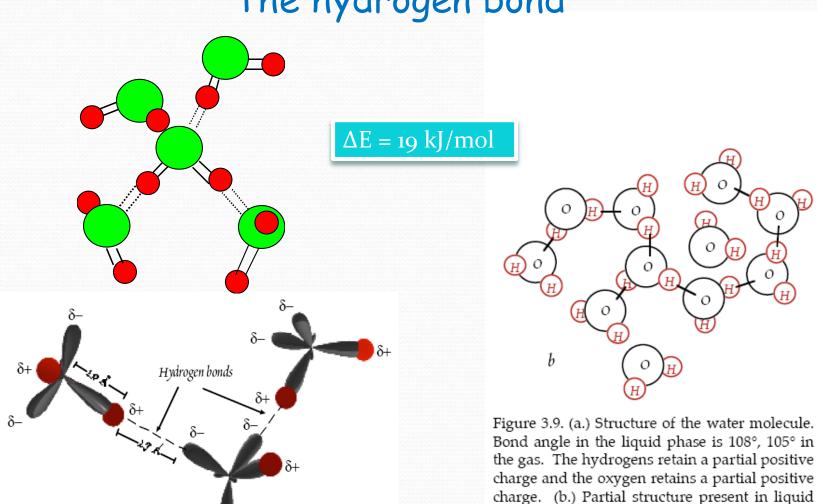


sp³ hybridization and the formation of water

Quadrapole moment of water

Quadrapole moment of water and hydrogen bonding


FIGURE 4.4

The three-dimensional structure of the water molecule.

WATER

The hydrogen bond

water. Lines connecting adjacent molecules

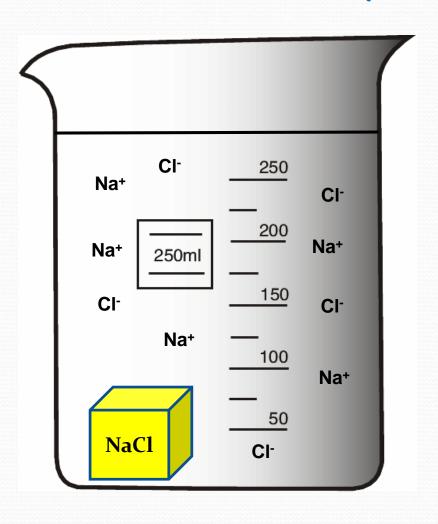
illustrate hydrogen bonds.

Anomalous Properties of Water

- Maximum Density $\rho_{\text{solid}} < \rho_{\text{liquid}}$
- High Heat Capacity
- High Heat of Fusion and Evaporation
- High Surface Tension and Viscosity
- High Dielectric Constant
- High Transparency
- High Thermal Expansion
- High Heat Conduction

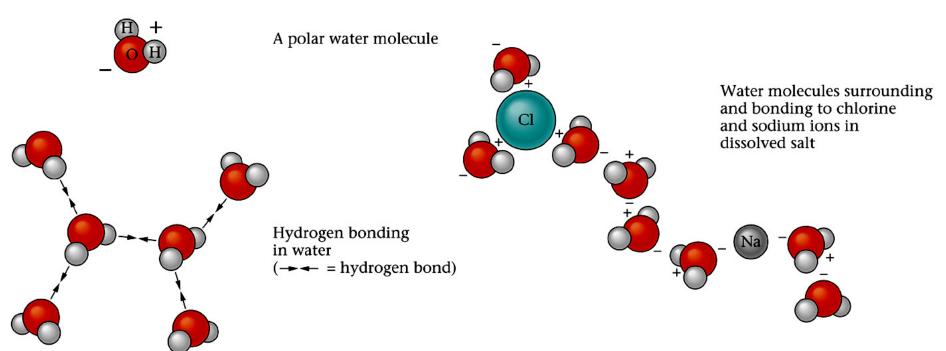
Anomalous Properties of Water

TABLE 4.2

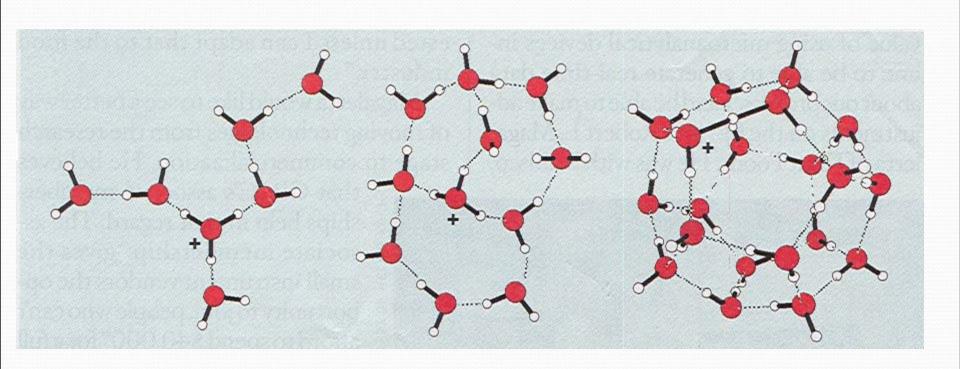

Summary of Anomalous Properties of H2O

Property	Results
1. High heat capacity	Prevents extreme ranges of temperature
	Heat transfer by water movement is large
	Maintains uniform body temperatures
High heat of fusion	Thermostatic effect of freezing and melting
 High heat of evaporation 	Important in transfer from heat to water to atmosphere
4. Thermal expansion	Fresh H_2O and dilute seawater have maximum density above T_m (the melting point)
	Controls the temperature density distribution and vertical circulation in lakes
High surface tension ,	Important in cell physiology
	Controls certain surface behavior and drop formation
6. High dielectric constant	Important in causing salts to ionize and become electrolytes (dissolving power)
7. Little electrolyte dissociation	H ⁺ and OH behavior very important in many geological and biological processes
8. High transparency	Adsorbs radiant energy in the infrared and ultraviolet; little is visible; important to physical and biological process
9. High conduction of heat	Important only on small scale as in living cells; eddy conductance greater
 Cp and β changes with temperature are different from other fluids 	Unique behavior of thermoproperties of solutes in solution
11. High viscosity	Important to physical behavior (waves, etc.) and cell movement
 Density of solid ice is less than density of liquid at melting point 	Important for many geochemical, atmospheric, and biological processes

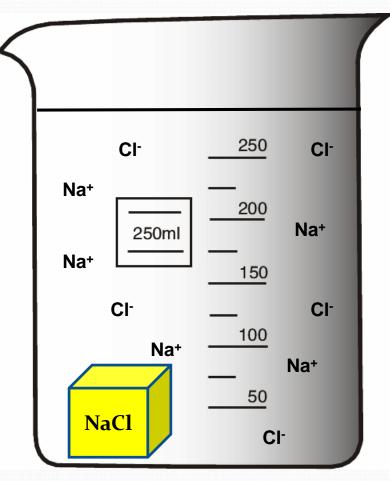
Comparison of Physical Properties of H₂O, MeOH, and n-Heptane

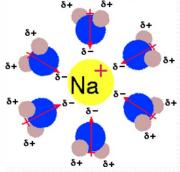

Property	H_2O	MeOH	n-Heptane
MW	18	32	100
Dipole moment (Debye's)	1.84	1.70	>0.2
Dielectric constant	80	24	1.97
Density (gm cm ⁻³)	1.0	0.79	0.73
Boiling point (°C)	100	65	98.4
Melting point (°C)	0	-98	-97
Specific heat (cal g ⁻¹ deg ⁻¹)	1.0	0.56	0.5
ΔH _{vap} (cal g ⁻¹)	540	263	76
ΔH_{fus} (cal g ⁻¹)	79	22	34
Surface tension (dynes cm ⁻¹)	73	23	25
Viscosity at 20°C (poise)	0.01	0.006	0.005
Compressibility at 25°C (atm-1)	4.57×10^{-11}	12.2×10^{-11}	14×10^{-11}

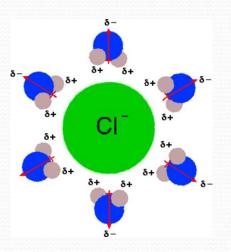
Addition of an electrolyte to water



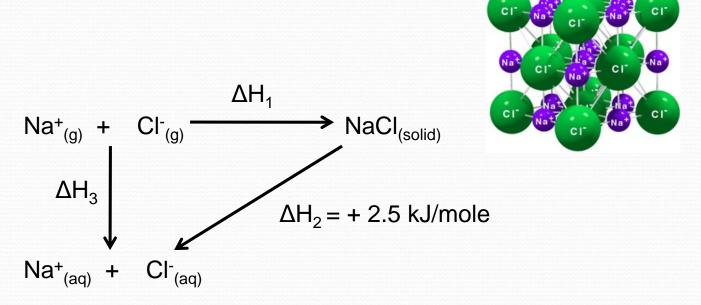
Bonds resulting from the polarity of molecules


Water is a very good solvent


Interaction of water with H^+ (H_3O^+)



Addition of an electrolyte to water



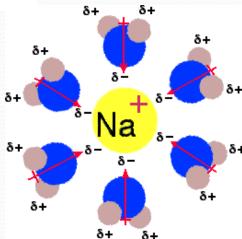

NaCl_(s) \rightarrow Na⁺_(aq) + Cl⁻_(aq) Δ H_{rx} = + 2.5 kJ/mole (endothermic reaction)

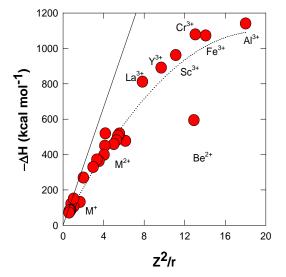
Addition of an electrolyte to water

 ΔH_1 = lattice heat = -757.3 kJ/mole

 ΔH_3 = heat of hydration = $\Delta H_1 + \Delta H_2 = -754.8$ kJ/mole

Solvated ions by water

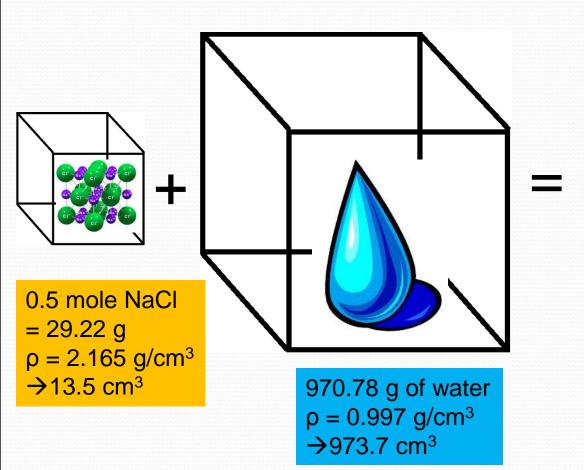

Hydrated ions

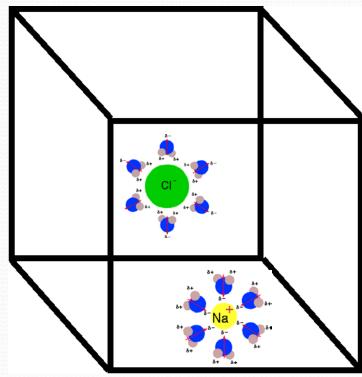

Charge density of an ion (Zé/volume) and the formation of a hydration sphere:

- 1) Cations are generally more hydrated than anions.
- 2) The greater the charge of the ion, the more heavily hydrated is the ions (ex: Mg²⁺>Li⁺, even though they have similar ionic radii).

3) For ions of similar charge, the smaller the ionic radius of the ion, the more heavily hydrated it is (ex:

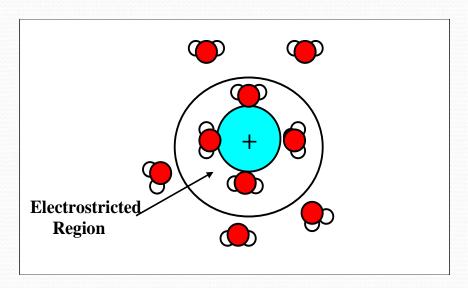
 $Li^+ > Na^+ > K^+$).





Hydration Numbers

lon	n _h	lon	n _h
Li+	2.8	F-	5.6
Na+	3.7	Cl-	2.0
K+	2.9	Br⁻	1.2
Mg^{2+}	7.8	I-	0.1
Ca ²⁺	6.5	OH-	6.4
Cu ²⁺	7.6	SO ₄ ²⁻	8.6
La ³⁺	14.7	CO ₃ ²⁻	12.8


Electrostriction

1000 g of solution $V \neq 13.5 + 973.7 = 987.2 \text{ cm}^3$ but ~ 982.5 cm³

Electrostriction

The amount of electrostriction is dependent upon the concentration and nature of the salt. It is related to the partial molal volume (\overline{V}) of the constituent ions.

$$(d\mu_i/dP)_T = V_i = partial molal volume$$

where $\mu_i = \mu_i^{\circ} + RT \ln a_i = \text{chemical potential}$ $a_i = \text{activity of species i}$

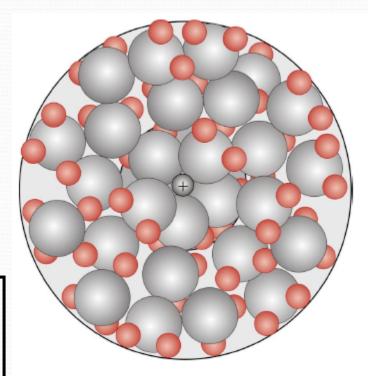
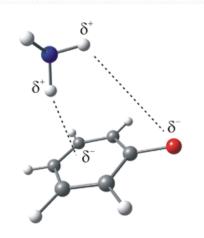
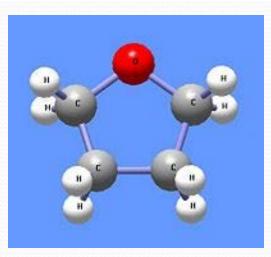
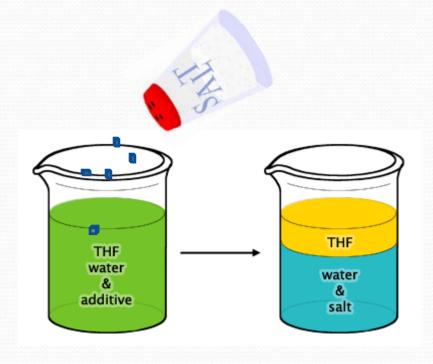




Figure 3.10. Solvation of a cation in aqueous solution. In the first solvation shell, water molecules are bound to the cation and oriented so that the partial negative charge on the oxygen faces the cation. In the second solvation shell molecules are only loosely bound and partially oriented.


Non-electrolyte in water

Non-electrolytes are held in solution by weak Van der Waals or dipoledipole interactions with water.

THF - tetrahydrofurane

Salting-out

Salting-out

Salting-out

Number of available water molecules in 1 liter (or \sim 1 kg) = (1000g l⁻¹)/(18g mol⁻¹) = 55.55 moles l⁻¹

Upon the addition of an electrolyte (salt), the number of water molecules (per liter of water) available to dissolve a non-electrolyte is given by:

$$55.55 - \Sigma c_i n_h$$

 c_i = ion concentration in mole I^{-1} n_h = hydration number of the ion

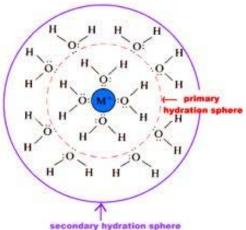
Assuming that the solubility of a non-electrolyte in water is simply proportional to the number of water molecules outside the first hydration layer of the ions, then:

$$S/S_o = (55.55 - \Sigma c_i n_h)/55.55$$

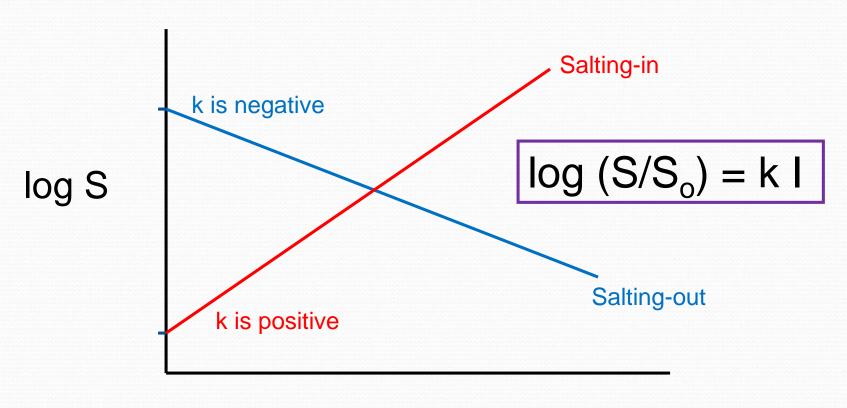
 S_o = solubility of the non-electrolyte in pure water S = solubility of the non-electrolyte after the addition of an electrolyte

Salting-out

2, 4 dinitrophenol



1 mole KClO₄ (potassium perchlorate)


+
$$O = CI - O^{-} K^{+}$$
 $NK^{+} = 2.9 \text{ and } nCIO_{4}^{-} = 6$

$$S/S_o = (55.55 - (1 * 2.9 + 1 * 6))/55.55$$

= $(55.55 - 8.9)/55.55$
= $46.65/55.55$
= 0.84

$$(S/S_o)_{Exp} = 0.7$$

Salting-in and Salting-out

Ionic strength, I

Ion-ion interactions The non-ideal behaviour of solutes

The deviation from ideality is given by the activity coefficient (γ):

 a_i = activity or "effective or thermodynamic concentration" = γ_i [i]

$$\gamma_i = 1$$
 when $\Sigma[i] = 0$.

or, in terms of free energy or chemical potential,

$$\mu_i = \mu_i^o + RT \ln a_i = \mu_i^o + RT \ln \gamma_i + RT \ln [i]$$

In nearly pure water (infinite dilution solutions), where all solute ions or molecules contact only water molecules, $a_i = [i]$ and the activity coefficients of all solutes are equal to one. Given the definition of the standard state, the solute-water interactions are accounted for.

As salt concentrations increase, individual aqueous species interact with each other – electrostatic or coulombic interactions.

Ionic Strength

Coulombic interactions are proportional to the charge concentration of the ions involved. The charge concentration is given by the ionic strength (I):

$$I = \frac{1}{2} \Sigma([i] \cdot Z_i^2) \approx 0.7 \text{ m in seawater}$$

where [i] is in molal units (mole of ions/kg H_2O) and Z_i is the charge of the ion i. The ionic strength is summed for all charged species in solution, assuming that all electrolytes are present as free ions in solution.

 $I \sim 2 \times 10^{-5} \times TDS$ or $\sim 0.8 \times 10^{-5} \times SpC$ for a NaCl solution $I \sim 2.5 \times 10^{-5} \times TDS$ or $\sim 1.7 \times 10^{-5} \times SpC$ for typical surface waters $I \sim 2.8 \times 10^{-5} \times TDS$ or $\sim 1.9 \times 10^{-5} \times SpC$ for Ca(HCO₃)₂ solutions

Debye-Hückel Theory

In dilute solutions, the interactions among ions are mostly due to long-range electrostatic forces: attraction of ions of opposite charge and repulsion of ions of like charge. As a result of these forces, the distribution of ions in solution is not uniform. The separation of charges at the molecular scale leads to local variations in the electrical potential of the solution which decreases the total free energy of the system.

Assuming that the only interactions not accounted for by chemical reactions are due to their electrical charge, strictly electrostatic interactions, Debye and Hückel evaluated the relevant electrostatic energy and included it in the expression of the free energy of the ions.

From electrostatic theory, we know that the work necessary to bring a charge 'c' from an electrical potential ψ to a potential ψ ' is:

$$W = c [\psi' - \psi] = Z_i F [\psi' - \psi]$$

Debye-Hückel Theory

Given that the charge of an ion is equal to Z_iF , then:

$$W = Z_i F [\psi' - \psi^{\circ}]$$

$$(dG/dn_i)_{T,P} = \mu_i = \mu^{\circ}_i + RT \ln [i] + Z_i F \psi'$$

Assuming that the ions behave as point charges (finite dimension) in a continuous medium of uniform dielectric constant, Debye and Hückel derived the following expression of ψ ':

$$\psi' = - \ A \ (RT/F) \ Zi \ (I^{1/2}/(1 + Ba \ I^{1/2})$$

$$\mu_i = \mu^{\circ}_{\ i} + RT \ ln \ [i] - A \ RT \ Z_i^{\ 2} \ (I^{1/2}/(1 + Ba \ I^{1/2})$$

Hence, electrostatic interactions among ions results in a decrease of their molal free energies.

Debye-Hückel Theory

$$\log \gamma_i = -AZ_i^2 I^{1/2}/(1 + a_i BI^{1/2})$$

where A and B are constants that depend only on the temperature and dielectric constant of the system.

For water at 25°C and 1 atm total pressure:

A = 1.824928 x 10⁶ (ε T)^{2/3} = 0.5085 mol^{-1/2} l^{1/2} and B = 50.29 x 10⁸/(ε T)^{1/2} = 0.3281 x 10⁸ cm⁻¹ mol^{-1/2} l^{1/2}

ε is the dielectric constant of water (a measure of its capacity to hold charges in solution). Pure water has the highest dielectric constant of all liquids.

a_i = adjustable size parameter (in angstroms or 10⁻⁸ cm) which corresponds roughly to the distance of closest approach between the centre of adjacent ions or the radius of the hydrated ion.

Single ion activity coefficients calculated from the Debye-Hückel Equation

Table 12.3 List of Values for Constants Used in the Debye-Hückel Theory Expressed in Equation 12.46

Temperature, °C		В	
1 emperature, C			
0	0.4883	0.3241	
5	0.4921	0.3249	
10	0.4960	0.3258	
15	0.5000	0.3262	
20	0.5042	0.3273	
25	0.5085	0.3281	
30	0.5130	0.3290	
35	0.5175	0.3297	
40	0.5221	0.3305	
- 45	0.5271	0.3314	
50	0.5319	0.3321	
55	0.5371	0.3329	
60	0.5425	0.3338	

source: Garrels and Christ (1965).

SOURCE: Garrele and Christ (1965).

Table 12.4 Values of Parameter a of Ions in Aqueous Solution

Ions	a, Å
Rb*, Cs*, NH _s *, T1*, Ag*	2.5
K', CIT, Br", 1", NO.	3
OH-, F-, HS-, BrO; , IO; , MnO;	3.5
OH , F , HS , BrO3 , 104 , MINO4 Na*, HCO3 , H ₂ PO4 , HSO3 , H ₅ 2*, SO ² , SeO ² , CrO ² , HPO ¹ , PO ³	4.0-4.3
Sr ²⁺ , Ba ²⁺ , Ra ²⁺ , Cd ²⁺ , Hg ²⁺ , S ²⁻ , WO ₄ ²⁻	5.0
Li+, Ca2+, Cu2+, Zn2+, Sn2+, Mn2+, Fe2+, Ni2+, Co2+	6
Mg2*, Be2*	8
Mg", Ber H', Al ³⁺ , Cr ³⁺ , REE ³⁺	9
Th ⁴ *, Zr ⁴ *, Ce ⁴ *, Sn ⁴ *	11

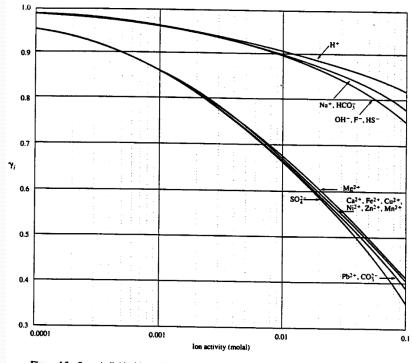


Figure 4.3 Some individual ion activity coefficients calculated using the extended Debye-Hückel equation.

The Debye-Hückel equation predicts that activity coefficients decrease continuously with ionic strength. The model is reasonably accurate to an ionic strength of 0.1 m.

Davies Equation

For higher ionic strengths, the Debye-Hückel equation was modified by adding a term which takes into account non-coulombic interactions and the increase of γ with I.

$$\log \gamma_i = -AZ_i^2 (I^{1/2}/1 + BaI^{1/2}) + bI$$

where b is a general constant (0.2-0.3) or a specific constant for each individual ion i. This expression is known as the *Davies equation*. This equation yields reasonably accurate estimates of the individual ion activity coefficients for solutions of ionic strengths up to 0.5 m but is not suitable for seawater or solutions of higher ionic

strength. ... (PHREEQE, WATEQ, MINEQL, ...)

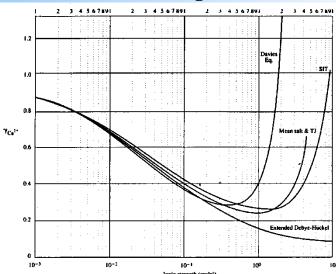
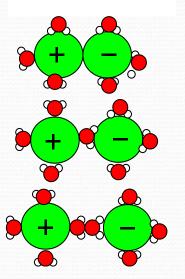



Figure 4.4 Comparison of the ion activity coefficient of Ca³⁺ as computed using different approaches. These include: (1) the Davies equation; (2) the mean salt approach using the Maclinnes convention, and Truesdell-Jones equation (curve labeled Mean salt & TJ); (3) the specific ion interaction (STT) equation; and (4) the extended Debye-Hückel equation.

Associated electrolytes (ion-pairs)

Ion-pairs result from purely electrostatic attraction between oppositely charged ions.

ex:
$$Cd^{2+} + Cl^{-} \longleftrightarrow CdCl^{+}$$
 (positive ion pair)
 $Hg^{2+} + 3Cl^{-} \longleftrightarrow HgCl_{3}^{-}$ (negative ion pair)
 $Mg^{2+} + SO_{4}^{2-} \longleftrightarrow MgSO_{4}^{0}$ (neutral ion pair)

Contact ion-pair

Solvent-shared ion-pair

Solvent-separated ion-pair

Specific Interaction or Pitzer Equation

$$\ln \gamma_{M} = D.H. + \sum M-X + \sum M-N + \sum M-N-X$$

$$\sum MX = \sum M-Cl + M-SO_4 + \sum M-HCO_3$$

$$\sum$$
 M-N = M-Na, M-Mg, M-Ca ...

$$\sum$$
 M-N-X = M-Na-Cl, M-Na-SO₄, ...

Specific Interaction or Pitzer Equation

$$\ln \gamma_{C} = z_{C}^{2} f^{\gamma} + \sum_{a} m_{a} \left\{ 2B_{Ca} + \left(2 \sum_{c} m_{c} z_{c} \right) C_{Ca} \right\}
+ \sum_{c} m_{c} \left(2\Theta_{Cc} + \sum_{a} m_{a} \psi_{Cca} \right) + \sum_{c} \sum_{a} m_{c} m_{a} (z_{C}^{2} B'_{ca} + |z_{C}| C_{ca})
+ \frac{1}{2} \sum_{a} \sum_{a'} m_{a} m_{a'} \psi_{Caa'} + 2 \sum_{n} m_{n} \lambda_{Cn} + 3 \sum_{i} \sum_{j} m_{i} m_{j} \mu_{Cij}$$

The first term on the right is a modified Debye-Hückel term which takes into account long range electrostatic interactions:

$$f^{\gamma} = -0.392 \left[(I^{1/2}/1 + 1.2I^{1/2}) + (2/1.2) \ln (1 + 1.2I^{1/2}) \right]$$

B terms describe the interactions of species of opposite sign and are functions of the ionic strength, much like the ion-pairing stability constants. Interactions between species of like charges (θ terms) are assumed independent of I. Ternary interaction terms (Ψ) in the Pitzer equation are not generally needed for I<3.5 mol/kg, they take into account interactions between two-like charged and a third unlike-charged species. They are also assumed to be independent of ionic strength.

Single ion activity coefficients

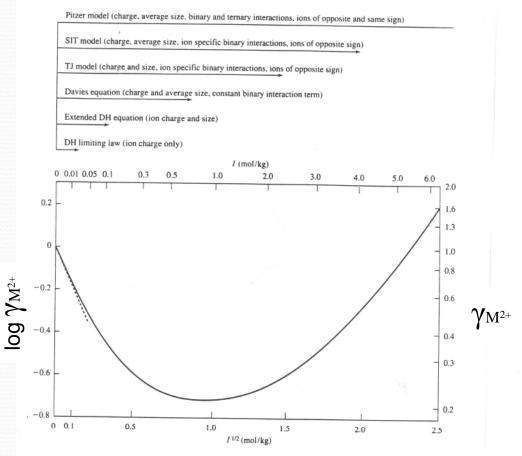
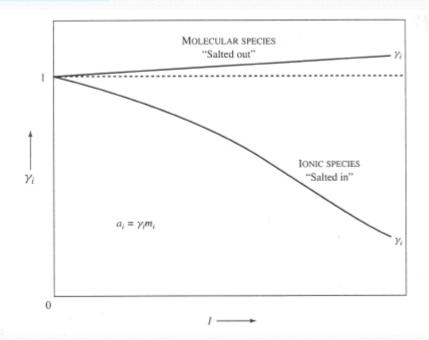


Figure 4.5 Schematic plot showing the general applicability of different activity coefficient models as a function of ionic strength for a divalent cation. The dashed tangent to the curve at its origin is a plot of the Debye-Hückel limiting law for the ion.

Activity coefficients of Neutral Species

Given that non-ideality for ions arises primarily as a result of electrostatic interactions with each other, one would expect that neutral species should behave differently since, with no charge, the electrostatic interactions should be negligible. In general, activity coefficients of uncharged species are near unity in dilute solutions and often rise above unity in concentrated solutions because more water is tied up in the hydration of ions and less water is available to interact with the uncharged species (i.e., salting-out). Irrespective of the behaviour of individual neutral solutes, most of the recent studies indicate that $\log \gamma_i$ is proportional to the ionic strength and can be represented by the Setchenow equation:

$$\log \gamma_i = K_i I$$


Activity coefficients of Neutral Species (the Setchenow (salting-out) equation)

$$\log \gamma_i = K_i I$$

TABLE 4.5 Values of the salting out coefficient, K_i , where $\log \gamma_i = K_i I$, for some molecular species in NaCl solutions at 25°C based on various sources

Aqueous species	K_i	Source
H ₂	0.094	†
O ₂	0.132	†
C ₂ H ₄ (ethylene)	0.093	†
C ₆ H ₅ COOH(benzoic acid)	0.191	†
C ₆ H ₄ (OH)COOH(salicylic acid)	0.196	†
CH3COOH(acetic acid)	0.066	†
CH ₄	0.129	‡
N ₂	0.20	‡
H ₂ CO ₃ °	0.231	§
H ₄ SiO ₄ °	0.080	II
H ₂ S	0.020	§
H ₃ PO ₄ °	0.052	§
NH ₃	0.036	§
H ₁ BO ₁	0.045	8

Source: [†]Harned and Owen (1958); [‡]Millero and Schrieber (1982); [‡]Millero (1983); [‡]Marshall and Chen (1982).

