Redox reactions

http://eps.mcgill.ca/~courses/c220/

Redox reactions

In a similar way that acids and bases have been defined as proton donors and proton acceptors, reductants and oxidants are defined as electron donors and electron acceptors. Because there are no free electrons, every oxidation reaction must be accompanied by a reduction, and vice versa; or an oxidant is a substance that causes oxidation to occur while being reduced itself.

One of the most significant of redox reactions in nature involves the weathering of pyrite according to:

 $4\text{FeS}_2 + 15\text{O}_2 + 14\text{H}_2\text{O} \rightarrow 4\text{Fe(OH)}_3 + 16\text{H}^+ + 8\text{SO}_4^{-2-}$

which probably proceeds by the following steps:

 $4\text{FeS}_{2} + 14\text{O}_{2} + 4\text{H}_{2}\text{O} \rightarrow 4\text{Fe}^{2+} + 8 \text{ SO}_{4}^{2-} + 8\text{H}^{+}$ $4\text{Fe}^{2+} + \text{O}_{2} + 4\text{H}^{+} \rightarrow 4\text{Fe}^{3+} + 2\text{H}_{2}\text{O}$ $4\text{Fe}^{3+} + 12\text{H}_{2}\text{O} \rightarrow 4\text{Fe}(\text{OH})_{3} + 12\text{H}^{+}$

http://eps.mcgill.ca/~courses/c220/

Oxidation of ferric (Fe²⁺) compounds

Any ferrous compound, upon prolonged exposure to air is expected to oxidize, according to reactions of the form:

 $\frac{\text{Olivine group}}{\text{Fe}_2\text{SiO}_4 + \frac{1}{2}\text{O}_2 + 2\text{H}_2\text{O} \rightarrow \text{Fe}_2\text{O}_3 + \text{H}_4\text{SiO}_4}$

Pyroxene

 $\overline{2\text{CaFeSi}_2\text{O}_6} \text{ (hedenbergite)} + 1/2\text{O}_2 + 10\text{H}_2\text{O} + 4\text{CO}_2$ $\rightarrow \text{Fe}_2\text{O}_3 + 4\text{H}_4\text{SiO}_4 + 2\text{Ca}^{2+} + 4\text{HCO}_3^{-1}$

These equations express only the overall result of the oxidation process. Details of the mechanisms are not known, but most likely involve progressive dissolution of the ferrous compounds by H_2CO_3 :

$$Fe_2SiO_4 + 4H_2CO_3 \leftrightarrow 2Fe^{2+} + 4HCO_3^- + H_4SiO_4$$

Followed by the oxidation of the Fe²⁺ by oxygen: $2Fe^{2+} + 4HCO_3^- + 1/2O_2 + 2H_2O \leftrightarrow Fe_2O_3 + 4H_2CO_3$

Oxidation state of some important elements

TABLE 11.1 Oxidation states of some important elements as they occur in natural waters and mineral systems

Element	Symbol	Number of protons (atomic number)	Oxidation states	Element	Symbol	Number of protons (atomic number)	Oxidation states
Aluminum Antimony Arsenic Barium Bervilium	Al Sb As Ba Be	13 51 33 56	3+ 3+, 5+ 3+, 5+, (0) 2+ 2+	Lead Lithium Magnesium Manganese Mercury	го Li Mg Mn Hg	82 3 12 25 80	2+. (4+). (0) 1+ 2+ 2+, (3+), (4+) 2+, 1+, (0)
Bismuth Boron Bromine Cadmium Calcium	Bi B Br Cd Ca	83 5 35 48 20	3+, (0) 3+ 1-, 0 2+ 2+	Nickel Nitrogen Oxygen Phosphorus Platinum	Ni N O P Pt	28 7 8 15 78	2+. (3+) 5+. 3+. 0. 3- -2 0 5+ 4+. 2+
Carbon Chlorine Chromium Cobalt Copper	C Cl Cr Co Cu	6 17 24 27 29	4+. (0). 4 2- 1- 6+. 3+ 2+. (3+) 2+. 1+. (0)	Potassium Radium Selenium Silicon Siliver Sodium	K Ra Se Si Ag No	19 88 34 14 47	1+ 2+ 6+, 4+, (0), 2- 4+ 1+, (0)
Fluorine Gold Hydrogen Iron Iodine	F Au H Fe	9 79 1 26 53	1 0 3+. 1+. (0) 1+. 0 3+. 2+ 5+. 0. 1-	Soaium Strontium Sulfur Thorium Tin Titanium	Na Sr S Th Sn Ti	11 38 16 90 50 _	1+ 2+ 6+, 4+, 0, (1–), 2– 4+ 4 + 4 +
				Tungsten Uranium	w U	74 92	6 + 6+, 4+

Vanadium

Zinc

Note: Values in parentheses are found in mineral systems only.

v

Zn

2+

5+, 4+, 3+

23

30

Redox equilibria and electron activity

Any oxidation or reduction reaction can be written as a half-cell reaction. The general half-reaction is, by convention, written as a reduction reaction with the electrons on the left:

$aA + bB + ne \leftrightarrow cC + dD$

where the upper case and lowercase letters denote the species involved in the reaction and their stoichiometric coefficients, and n is the number of electrons (é). Even though free electrons do not exist in solution, we can formulate an equilibrium expression for the half-cell:

$$\begin{split} \mathsf{K}_{eq} &= ((\mathsf{C})^c \ (\mathsf{D})^d) / ((\mathsf{A})^a \ (\mathsf{B})^b \ (\acute{e})^n) \quad \text{or} \\ &\log \mathsf{K}_{eq} \ = \ c \ \log(\mathsf{C}) + d \ \log(\mathsf{D}) - a \ \log(\mathsf{A}) - b \ \log(\mathsf{B}) - n \ \log(\acute{e}) \\ &-\log \ (\acute{e}) \ = p\epsilon = \ (1/n) \ \log \ \mathsf{K}_{eq} - (1/n) \ \log \ \{((\mathsf{C})^c \ (\mathsf{D})^d) / ((\mathsf{A})^a \ (\mathsf{B})^b)\} \\ &= \ (1/n) \ \log \ \mathsf{K}_{eq} - (1/n) \ \log \ (\Pi(\text{reductants})^v / \ \Pi(\text{oxidants})^v) \\ &= \ (1/n) \ \log \ \mathsf{K}_{eq} + (1/n) \ \log \ (\Pi(\text{oxidants})^v / \ \Pi(\text{reductants})^v) \\ &= \ p\epsilon^o \ - (1/n) \ \log \ \{((\mathsf{C})^c \ (\mathsf{D})^d) / ((\mathsf{A})^a \ (\mathsf{B})^b)\} \end{split}$$

Electron activity and the Nernst equation

$$p\epsilon^{o} = 1/n \log K_{eq}^{o} = -(1/n) \Delta G_{rx}^{o}/2.303 RT = E_{h}^{o}/(2.303 RTF^{-1})$$

or
$$\Delta G_{rx}^{\circ} = -RT \ln K_{eq}^{\circ} = -2.303 RTn p \epsilon^{\circ} = -nFE_{h}^{\circ}$$

thus,

$$E_{h} = E_{h}^{o} - 2.303 (RT/nF) \cdot \log (C)^{c}(D)^{d}/(A)^{a} (B)^{b}$$

where E_{h}° is the equilibrium redox potential (volts, w/r SHE), related to the free energy of the reaction, R is the gas constant, T is the absolute temperature and F is the Faraday constant = 96,490 C mol⁻¹.

The term (2.303RT/F) is called the Nernst factor and is equal to 0.05916 volts at 25°C. The above expression is know as the **Nernst equation**.

Reaction	Log K at 25°C	Standard Electrode Potential (V) at 25°C	p٤°
$Na^+ + e^- = Na(s)$	-46	-2.71	-46
$Mg^{2+} + 2e^{-} = Mg(s)$	-79.7	-2.35	-39.7
$Zn^{2+} + 2e^{-} = Zn(s)$	-26	-0.76	-13
$Fe^{2+} + 2e^{-} = Fe(s)$	-14.9	-0.44	-2.45
$Co^{2^{+}} + 2e^{-} \neq Co(s)$	-9.5	-0.28	-4.75
$V^{3+} + e^- = V^{2+}$	-4.3	-0.26	-4.30
$2H^+ + 2e^{f} = H_2(g)$	0.0	0.00	0
$S(s) + 2A^{-} + 2e^{-} = H_2S$	+4.8	+0.14	2.4
$Cu^{2*} \neq e^- = Cu^+$	+2.7	+0.16	2.7
$AgCI(s) + e^{-} = Ag(s) + CI^{-}$	+3.7	+0.22	3.7
$Cy^{Z^+} + 2e^- = Cu(s)$	+11.4	+0.34	5.7
$\mathcal{L}u^+ + e^- = Cu(s)$	+8.8	+0.52	8.8
$Fe^{3+} + e^{-} = Fe^{2+}$	+13.0	+0.77	13:0
$Ag^{+} + e^{-} = Ag(s)$	+13.5	+0.80	13.5
$Fe(OH)_3(s) + 3H^+ + e^- = Fe^{2+} + 3H_2O$	+17.1	+1.01	17.1
$IO_3^- + 6H^+ + 5e^- = \frac{1}{2}I_2(s) + 3H_2O$	+104	+1.23	20.8
$MnO_2(s) + 4H^+ + 2e^- = Mn^{2+} + 2H_2O$	+43.6	+1.29	21.8
$Cl_2(g) + 2e^- = 2Cl^-$	+46	+1.36	23
$Co^{3+} + e^{-} = Co^{2+}$	+31	+1.82	31

 Table 8.3. Equilibrium Constants and Standard Electrode Potentials for Some Reduction

 Half-Reactions

Table 8.3.	Equilibrium	Constants an	d Standard	Electrode	Potentials	for Some	Reduction
Half-Reacti	ons						

Reaction	Log K at 25°C	Standard Electrode Potential (V) at 25°C	p٤°
$Na^+ + e^- = Na(s)$	-46	-2.71	-46
$Mg^{2+} + 2e^{-} = Mg(s)$	-79.7	-2.35	-39.7
$Zn^{2+} + 2e^{-} = Zn(s)$	-26	-0.76	-13
$Fe^{2+} + 2e^{-} = Fe(s)$	-14.9	-0.44	-2.45
$Co^{2^+} + 2e^- \neq Co(s)$	-9.5	-0.28	-4.75
$V^{3+} + e^- = V^{2+}$	-4.3	-0.26	-4.30
$2H^+ + 2e^{f} = H_2(g)$	0.0	0.00	0
$S(s) + 2A^{-} + 2e^{-} = H_2S$	+4.8	+0.14	2.4
$Cu^{2+} \neq e^- = Cu^+$	+2.7	+0.16	2.7
$AgCI(s) + e^{-} = Ag(s) + CI^{-}$	+3.7	+0.22	3.7
$Cyz^{+} + 2e^{-} = Cu(s)$	+11.4	+0.34	5.7
$\mathcal{L}u^+ + e^- = Cu(s)$	+8.8	+0.52	8.8
$Fe^{3+} + e^{-} = Fe^{2+}$	+13.0	+0.77	13:0
$Ag^+ + e^- = Ag(s)$	+13.5	+0.80	13.5
$Fe(OH)_3(s) + 3H^+ + e^- = Fe^{2+} + 3H_2O$	+17.1	+1.01	17.1
$IO_3^- + 6H^- + 5e^- = \frac{1}{2}I_2(s) + 3H_2O$	+104	+1.23	20.8
$MnO_2(s) + 4H^+ + 2e^- = Mn^{2+} + 2H_2O$	+43.6	+1.29	21.8
$Cl_2(g) + 2e^- = 2Cl^-$	+46	+1.36	23
$\frac{Co^{3+} + e^{-} = Co^{2+}}{2}$	+31	+1.82	31

	Redox table - list of reduction	on		
	potentials measured under s		aduction	
	conditions (25°C, 1 atmosph		auction	
DXIDISING	pressure, 1 mol/L solution)		REDUCING	
AGENTS	Li⁺ + e⁻ 긎 Li(s)	-3.04 V	AGENTS	
Oxidants)	K⁺ + e⁻ 긎 K(s)	-2.92 V	(Reductants)	nc°
Weakest	Ba²+ + 2e⁻़ Ba(s)	-2.90 V	Strongest	
oxidising	$Ca^{2+} + 2e^{-} \iff Ca(s)$	-2.87 V	reducing	-46
agents	Na⁺ + e⁻ 러 Na(s)	-2.71 V	agents	-39.7
	Mg²+ + 2e⁻ 긎 Mg(s)	-2.36 V		-13
	Al³+ + 3e⁻ 긎 Al(s)	-1.66 V		-2.45
	Zn²+ + 2e⁻ ≕ Zn(s)	-0.76 V		-4.75
	Fe²+ + 2e⁻ ≕ Fe(s)	-0.41 V		-4 30
Strength of	Sn²+ + 2e⁻ ≕ Sn(s)	-0.14 V	Strength of	4.50
oxiaising	Pb²+ + 2e⁻ ⇐⇒ Pb(s)	-0.13 V	reducing	24
agents	$Fe^{j+} + 3e^{-} \rightleftharpoons Fe(s)$	-0.02 V	agents	2.4
ncreases	H⁺ + e⁻ ़ 1/2H₂(g)	0.00 V	decreases	2.7
lown table	SO ₄ ² ⁺ + 2e ⁺ + 4H ⁺ → SO ₂ (g) + 2	2H ₂ O_0.21 V	down table	3.7
	Cu ²⁺ + 2e ⁻ ← Cu(s)	0.34 V		5.7
	$1/2I_2(s) + e^- \rightleftharpoons I^-$	0.54 V		8.8
	1/2l₂(aq) + e = == l-	0.62 V		13.0
tropgoct	$Fe^{j+} + e^{-} \rightleftharpoons Fe^{j+}$	U.//V	Workort	13.5
ouidicipa	$Ag^+ + e^- \iff Ag(s)$	0.80 V	roducipa	17.1
aponts	$1/2U_2(g)+2H^++2e^- \iff H_2U$	1.23 V	agents	20.8
igence	$1/2 \cup 1/2 $	1.36 V	agents	21.8
	MINU4 +38 +8H ' == MIN-' +4F	120 1.510		21.0
	$\frac{1/2}{1/2} + \frac{1}{1/2} + $	<u>2.87 V</u>		23
	E) the more easily the subst	anual, (e.g. Iopoolio		
	reduced (and thus the areator	ance is rita		
	lovidising nower)	i its		
	DXIDISING GENTS Oxidants) Veakest invidising igents forength of indising igents foreases lown table	Redox table - list of reducti potentials measured under s conditions (25°C, 1 atmosph pressure, 1 mol/L solution) DXIDISING (GENTS)Li* + e* \rightleftharpoons Li(s) pressure, 1 mol/L solution) Ui* + e* \rightleftharpoons Li(s) (Sidising ugentsK* + e* \rightleftharpoons Li(s) $Ca^{2+} + 2e* \rightleftharpoons$ Ba(s) $Ca^{2+} + 2e* \rightleftharpoons$ Ca(s) Na* + e* \rightleftharpoons Na(s) Mg ²⁺ + 2e* \rightleftharpoons Mg(s) Al ³⁺ + 3e* \rightleftharpoons Al(s) Zn ²⁺ + 2e* \rightleftharpoons Pb(s) Fe ²⁺ + 2e* \rightleftharpoons Pb(s) Fe ²⁺ + 2e* \rightleftharpoons Pb(s) Fe ³⁺ + 3e* \rightleftharpoons Fe(s) SO ₄ 2* + 2e* \leftrightarrow Pb(s) Fe ³⁺ + 3e* \rightleftharpoons Fe(s) SO ₄ 2* + 2e* \leftrightarrow Pb(s) Fe ³⁺ + 2e* \leftrightarrow Cu(s) 1/2I ₂ (aq) + e* \rightleftharpoons I* 1/2I ₂ (aq) + e* \rightleftharpoons I* 1/2I ₂ (aq) + e* \rightleftharpoons Ag(s) 1/2O ₂ (g)+2H*+2e* \leftrightarrow H ₂ O 1/2Cl ₂ (g) + e* \rightleftharpoons Cl- MnO ₄ *+5e*+8H* \rightleftharpoons Mn ²⁺ + 4* 1/2 F ₂ (q) + e* \rightleftharpoons F* The higher the reduction pote F ₂), the more easily the subst reduced (and thus the greate oxidising nower).	PXIDISING (GENTS)Redox table - list of reduction potentials measured under standard conditions (25°C, 1 atmosphere pressure, 1 mol/L solution)USIDISING (GENTS)Li* + e* \Longrightarrow Li(s)-3.04 VWeakest (widising) (gents)Li* + e* \rightleftharpoons Li(s)-2.92 VBa ²⁺ + 2e* \rightleftharpoons Ba(s)-2.90 VCa ²⁺ + 2e* \rightleftharpoons Ca(s)-2.87 VNa* + e* \rightleftharpoons Na(s)-2.71 VMg ²⁺ + 2e* \rightleftharpoons Mg(s)-2.36 VAl ²⁺ + 3e* \rightleftharpoons Al(s)-1.66 VZn ²⁺ + 2e* \rightleftharpoons Fe(s)-0.76 VFe ²⁺ + 2e* \rightleftharpoons Fe(s)-0.14 VSn ²⁺ + 2e* \rightleftharpoons Sn(s)-0.14 VSn ²⁺ + 2e* \rightleftharpoons Fe(s)-0.13 VPb ²⁺ + 2e* \rightleftharpoons Fe(s)-0.13 VFe ³⁺ + 3e* \rightleftharpoons Fe(s)-0.12 VNoreasesH* + e* \rightleftharpoons 1/2H ₂ (g)Nown tableSO ₄ ²⁺ + 2e* \rightleftharpoons Cu(s)Notation0.34 V1/2I ₂ (aq) + e* \rightleftharpoons I*0.62 VFe ³⁺ + e* \rightleftharpoons Ag(s)0.80 V1/2O ₂ (g)+2H++2e* \rightleftharpoons H ₂ O1.23 V1/2O ₂ (g) +2H++2e* \rightleftharpoons H ₂ O1.51V1/2C ₁ (g) + e* \rightleftharpoons F*2.87 VThe higher the reduction potential, (e.g.F ₂), the more easily the substance is reduced (and thus the greater its avidising nower)	NIDISING (GENTS) Oxidants)Redox table - list of reduction potentials measured under standard conditions (25°C, 1 atmosphere pressure, 1 mol/L solution) Li* + e* \rightleftharpoons Li(s) -3.04 V AGENTS Oxidants)REDUCING AGENTS (Reductants)Veakest widising ugentsBa ²⁺ + 2e* \rightleftharpoons Ba(s) -2.90 V Ca ²⁺ + 2e* \rightleftharpoons Ca(s) -2.87 V Na* + e* \rightleftharpoons Na(s) -2.71 V Mg ²⁺ + 2e* \rightleftharpoons Mg(s) -2.36 V Al ³⁺ + 3e* \rightleftharpoons Al(s) -1.66 V Zn ²⁺ + 2e* \rightleftharpoons Fe(s) -0.14 V Fe ²⁺ + 2e* \rightleftharpoons Fe(s) -0.14 V Sn ²⁺ + 2e* \rightleftharpoons Fe(s) -0.14 V Fe ²⁺ + 2e* \rightleftharpoons Fe(s) -0.14 V Sn ²⁺ + 2e* \rightleftharpoons Fe(s) -0.14 V gentsStrength of reducing agentstrength of widising ugentsSo ₄ ²⁻ + 2e* \leftrightarrow Fe(s) -0.14 V P ²⁺ + 2e* \rightleftharpoons Fe(s) -0.14 V P(2 ⁺ + 2e* \rightleftharpoons Fe(s) -0.12 V agentsStrength of reducing agentstrength of widising ugentsFe ³⁺ + 3e* \rightleftharpoons Fe(s) -0.02 V P(2 ⁺ + 2e* \rightleftharpoons Pb(s) -0.13 V reducing agentsStrength of reducing agentstrengets widising ugentsFe ³⁺ + 2e* \rightleftharpoons Pb(s) -0.13 V P(2 ⁺ + 2e* \rightleftharpoons Cu(s) 0.34 V 1/212(s) + e* \rightleftharpoons I* 0.62 V Fe ³⁺ + e* \rightleftharpoons Fe(s) 0.80 V NO4* + e* \rightleftharpoons Ag(s) 0.80 V NO4* + 5e* +8H* \rightleftharpoons Mn ²⁺ +4H ₂ O 1.51V 1/2C12(g) + e* \rightleftharpoons I* 0.62 V Fe ³⁺ + e* \rightleftharpoons Cl* 1.36 V MnO4* +5e* +8H* \rightleftharpoons Mn ²⁺ +4H ₂ O 1.51V 1/2E3(g) + e* \rightleftharpoons I* 2.87 V The higher the reduction potential, (e.g. F2), the more easily the substance is reduced (and thus the greater its ovidising nower).

The Standard Hydrogen Electrode (SHE)

The electrode reaction for the H_2 gas- H^+ ion couple:

 $2H^+ + 2\acute{e} = H_2(g)$ for which $E_h = E^\circ + (RT/2F) \ln \{(H^+)^2/pH_2\}$ Since $E^\circ = -\Delta G^\circ_{rx}/nF$ and $\Delta G^\circ_{rx} = 0$, then $E^\circ = 0$. $E_h = -0.0296 \log pH_2 - 0.0592 \text{ pH}$ which is equal to 0 at $(H^+) = 1$ and $pH_2 = 1$

In a circuit such as the one presented here, it can measure the potential of:

 $Cu^{2+} + 2e \leftrightarrow Cu^{\circ}$

The overall redox reaction is the sum of the two half-cell reactions or couples:

$$Cu^{2+} + H_2(g) \leftrightarrow 2H^+ + Cu^\circ$$

The measured E_h depends on the concentration of Cu²⁺ in the right-hand cell:

$$E_{h} \text{ (volts)} = E_{reduction} - E_{oxidation} = E_{Cu2+/Cu} - E_{H2/H+} = E_{Cu2+/Cu}$$
$$= E_{h}^{o} + (0.0592/2) \log (Cu^{2+})$$
$$= 0.340 + 0.0296 \log (Cu^{2+})$$

The standard state corresponds to E_h when the activity of all components = 1.

For the following reaction:

 $Fe(s) + Cu^{2+} \leftrightarrow Fe^{2+} + Cu(s)$

The reaction can be broken up into two half cells:

1)
$$Fe^{2+} + 2e \leftrightarrow Fe^{\circ} E_{h}^{\circ} = -0.41V$$

2) $Cu^{2+} + 2e \leftrightarrow Cu^{\circ} E_{h}^{\circ} = +0.34V$

If you do not have access to tables of E_{h}^{o} , you can calculate them from thermochemical data ($\Delta G_{rx}^{o} = -RT \ln K_{eq}^{o} = -nFE_{h}^{o}$).

Galvanic cell: its standard potential

For example, for the first reaction:

$$\begin{split} \Delta G^{o}_{rx} &= \Delta G^{o}_{f} \ (Fe(s)) - \Delta G^{o}_{f} \ (Fe^{2+}) \\ &= 0 - (-78900) J \ mol^{-1} = 78900 \ J \ mol^{-1} \\ &= -nF \ E^{o}_{h} \ = -2.303 \ RTn \ p\epsilon^{o} \end{split}$$

$$E_{h}^{o} = -78900/(2x96485) = -0.41V$$

For the complete reaction:

^o_{Cu-Fe cell} =
$$E^{\circ}_{reduction} - E^{\circ}_{oxidation}$$

= $E^{\circ}_{Cu half-cell} - E^{\circ}_{Fe half-cell}$
= $0.34 - (-0.41)$
= $0.75V$

The signs of both ΔG°_{rx} and E° of the complete cell reaction depend on how the cell is written, but the signs of the half-cell reactions do not. In this case, E° is positive and therefore ΔG°_{rx} is negative, meaning that the reactions should occur as written, i.e., $Fe(s) + Cu^{2+} \leftarrow \rightarrow Fe^{2+} + Cu(s)$

The potential calculated above is the standard potential when the activities of all the components are equal to one.

Standard Electrode Reaction Log K at 25°C Potential (V) at 25°C °عq $Na^+ + e^- = Na(s) -$ -46 -2.71 -46 Mg² $^{-} = Mgk$ -79.7 -2.35-39.7 -26 -0.76 -13 = Fe(s)-14.9-0.44-2.45-9.5-0.28Co. Cois -4.75-4.3-0.26-4.30 $H_{2}(g)$ 0.0 0.00 0 $2e^{-} = H_2S$ S(s) +4.8+0.142.4 Cu^2 +2.7+0.162.7 $= Ag(s) + Cl^{-}$ +3.7+0.223.7 = Cu(s)+11.4+0.345.7 $^{-} = Cu(s)$ +8.8+0.528.8 $+ e^{-} = Fe^{2+}$ +13.0+0.7713:0 $Ag^+ + e^- = Ag(s)$ +13.5+0.8013.5 $Fe(OH)_3(s) + 3H^+ + e^- = Fe^{2+} + 3H_2O$ +17.1+1.0117.1 $IO_3^- + 6H^- + 5e^- = \frac{1}{2}I_2(s) + 3H_2O$ +104 +1.2320.8 $MnO_2(s) + 4H^+ + 2e^- = Mn^{2+} + 2H_2O$ +43.6+1.2921.8 $Cl_{2}(g) + 2e^{-} = 2Cl^{-}$ +1.36+46 23 $Co^{3+} + e^{-} = Co^{2+}$ +31+1.8231

 Table 8.3. Equilibrium Constants and Standard Electrode Potentials for Some Reduction

 Half-Reactions

Galvanic cell: its true potential

If not at standard state and $(Cu^{2+})= 0.1$ and $(Fe^{2+})= 1.5$.

Using the Nernst equation for the complete cell at 25°C, we obtain:

$$\begin{split} \mathsf{E}_{\mathsf{h}} &= \mathsf{E}^{\mathsf{o}} - 2.303 \; (\mathsf{RT/nF}) \; \mathsf{log} \; \mathsf{Q} \\ &= \mathsf{E}^{\mathsf{o}} - (0.0592/\mathsf{n}) \; \mathsf{log} \; (\mathsf{Fe}^{2+})/(\mathsf{Cu}^{2+}) \\ &= 0.75 - (0.0592/2) \; \mathsf{log} \; (1.5/0.1) \\ &= 0.75 - 0.035 \\ &= 0.715 \mathsf{V} \end{split}$$

Conversely, the E_h of an aqueous system can be used to calculate the ratio of the reduced and oxidized species in solution.

		Redox table - list of reduction	on		
Table 8			aduction		
Holf Dog		conditions (25°C, 1 atmosph		sauction	
пап-кеа	OXIDISING	pressure, 1 mol/L solution)		REDUCING	
	AGENTS	Li+ + e- ⇒ Li(s)	-3.04 V	AGENTS	
Reaction	(Oxidants)	K+ + e- ⇒ K(s)	-2.92 V	(Reductants)	nc ^o
	Weakest	Ba²+ + 2e⁻़ Ba(s)	-2.90 V	Strongest	
Na⁺ + e	oxidising	Ca ²⁺ + 2e ⁻ ↔ Ca(s)	-2.87 V	reducing	-46
Mg ²⁺ +	agents	Na⁺ + e⁻ 긎 Na(s)	-2.71 V	agents	-39.7
$Zn^{2+} + 1$		Mg²+ + 2e⁻ ़ → Mg(s)	-2.36 V		-13
$Fe^{2+} + 1$		Al ³⁺ + 3e ⁻ ↔ Al(s)	-1.66 V		-2.45
$Co^{2-} +$		Zn²+ + 2e⁻ → Zn(s)	-0.76 V		-4.75
$V^{3+} + e$		Fe²+ + 2e⁻ ≕ Fe(s)	-0.41 V		-4.75
24 + 1	Strength of	Sn ²⁺ + 2e ⁻ ↔ Sn(s)	-0.14 V	Strength of	-4.30
$\frac{2\pi}{2} \pm \frac{2}{2}$	oxidising	Pb²+ + 2e⁻ ⇐ Pb(s)	-0.13 V	reducing	0
S(s) + 4	agents	Fe ^{]+} + 3e ⁻ =⇒ Fe(s	-0.02 V	agents	2.4
Cu ⁺ +	increases	H⁺ + e⁻ ़ → 1/2H₂(g)	0.00 V	decreases	2.7
AgQI(s)	down table 📩	SO₄ ²⁻ + 2e ⁻ +4H ⁺ ़ SO₂(g) +2	2H₂O 0.21∨	down table	3.7
Cy ²⁺ + :		Cu ²⁺ + 2e-↔ Cu(s)	0.34 V		5.7
¢u⁺ + e		$1/2I_2(s) + e^- \rightleftharpoons I^-$	0.54 V		8.8
$\angle Fe^{3+} + \epsilon$		1/2I₂(aq) + e⁻ → I⁻	0.62 V		13:0
$Ag^+ + e$		Fe³+ + e⁻ ╤╧ Fe²+	0.77 V		13.5
Fe(OH).	Strongest	Ag⁺ + e⁻ ≕ Ag(s)	0.80 V	Weakest	17.1
107 + 6	oxidising	1/2O₂(g)+2H++2e- ↔ H₂O	1.23 V	reducing	17.1
	agents	1/2Cl₂(g) + e⁻ 긎 Cl⁻	1.36 V	agents	20.8
$MnO_2(s)$		MnO₄+5e+8H+ → Mn2+ +4H	4₂O 1.51V		21.8
$Cl_2(g) +$		<u>1/2 F₂(q) + er ≓ Fr</u>	2.87 V		23
Co ³⁺ + (The higher the reduction pote	ntial, (e.g.		31
		F ₂), the more easily the subst	ance is		
		reduced (and thus the greater	r its		
		oxidising power).			

Theoretical limits of stability in an aqueous solution

The upper boundary of the water stability field is defined by E_h and pH values for which liquid water is in equilibrium with $O_2(g)$ at 1 bar pressure. It can be computed from the reaction:

$$O_{2}(g) + 4H^{+} + 4é \leftrightarrow 2 H_{2}O \qquad E^{\circ}_{h} = +1.23V$$

Therefore, $E_{h} = 1.23 + (0.059/4) \log (H^{+})^{4} pO_{2}$
= 1.23 − 0.059 pH + 0.015 log (0.2)
= 1.22 − 0.059 pH -0.01

At the upper boundary where $pO_2(g) = 1$ bar, the equation reduces to:

 E_{h} (volts) = 1.23 – 0.0592 pH

Eh vs pH diagram

Theoretical limits of stability in an aqueous solution

The lower boundary is defined by E_h and pH values for which liquid water is in equilibrium with $H_2(g)$ at 1 bar pressure. The lower limit of E_h within the stability field of water is described by the reduction of H_2O to hydrogen gas according to:

> 2H⁺ + 2é ← → H₂(g) $E_{h}^{\circ} = 0.00V$ $E_{h} = 0.00 + (0.059/2) \log (H^{+})/pH_{2}$ = -0.059 pH - (0.0059/2) log pH₂

for a pH_2 of 1 atm, the lowest value of E_h is obtained:

 $E_{h} = -0.059 \text{ pH}$

Eh vs pH diagram

Practical measurements of E_h

The standard hydrogen electrode is the ultimate reference for E_h (and pH) measurements but is both impractical and cumbersome to use for routine measurements in the field and laboratory. Instead, these measurements are usually performed with a platinum or glassy carbon indicator electrode and a calomel $(Hg_2Cl_2/Hg^o; E = 245 \text{ mV})$ or silver-silver chloride (Ag/AgCl; E = 200 mV) reference electrode. These reference electrodes have known potentials with respect to the SHE and measurements can be corrected accordingly:

$$E_h = E_{measured} + E_{ref. Electrode}$$

The performance of the electrodes can be verified using E_h buffers prepared in the laboratory from various ferrous-ferric iron salts (i.e., ZoBell's solutions).

The controlling redox equilibrium in a ZoBell solution is:

 $Fe(CN)_6^{3-} + e \leftrightarrow Fe(CN)_6^{4-}$

The E_h of an equimolar solution is 0.429 mV at 25°C or 0.229 mV w/r to a Ag/AgCl reference electrode.

The p ϵ or E_h of oxygenated water is thought to be controlled by the concentration of dissolved oxygen, following the reaction:

 $O_2(g) + 4H^+ + 4e \leftrightarrow 2H_2O(I)$ log K° = 83.1, E°_h = +1.23V, pε = 20.8

Hence,

 $\log K^{\circ} = 83.1 = 2 \log (H_2O) - \log pO_2 - 4 \log (H^+) - 4 \log (\acute{e})$ $= 2 (-0.01) - 0.69 + 4 pH + 4 p\epsilon$

at pH = 7, p ϵ = 13.9 or E_h = + 0.83 volts

In most well-oxygenated natural waters, the value of $p\epsilon$ will not diverge significantly from this value. By taking into consideration hydrolysis and complexation (inorganic and organic) reactions and the formation of sparingly soluble minerals, one should be able to construct E_h -pH diagrams for most elements and determine the predominant species in oxygenated solutions.

The decomposition of organic matter accumulating in sediment and bottom waters isolated from atmospheric exchange by strong stratification of the water column may strip the water of oxygen and cause a fall in the pɛ or E_h . If the water becomes completely de-oxygenated (i.e., anoxic), sulfate-reducing bacteria will proliferate and lead to the production of H_2S . In anoxic systems, the E_h is believed to be controlled by either the HS⁻/SO₄²⁻ couple:

SO₄²⁻ + 9H⁺ + 8é ← → HS⁻ + 4H₂O(I) log K^o = 34.0 log K^o = 34 = 4 log (H₂O) - log (HS⁻) - log (SO₄²⁻) - 9 log(H⁺) - 8 log (é) = 4 (-0.01) - log (HS⁻) - log (SO₄²⁻) + 9 pH + 8 pε at pH = 7, pε = (- log (HS⁻) - log (SO₄²⁻) - 29)/8 S^o/SO ²⁻ couple:

or by the S°/SO_4^{2-} couple:

SO₄²⁻ + 8H⁺ + 6é ← → S° + 4H₂O(I) log K° = 36.6 log K° = 36.6 = 4 log (H₂O) - log (S°) - log (SO₄²⁻) - 8 log(H⁺) - 6 log (é) = 4 (-0.01) - log (S°) - log (SO₄²⁻) + 8 pH + 6 pε at pH = 7, pε = (-log (S°) - log (SO₄²⁻) - 19.4)/6

Eh vs pH diagram

$p\epsilon$ -pH and E_h -pH diagram

Taking into account hydrolysis reactions (pH-dependent), one should be able to construct $p\epsilon$ -pH or E_h -pH diagrams for most elements and determine the predominant species in water under various environmental conditions. These diagrams are a convenient way of displaying stability relationships where redox reactions are involved.

Constructing Eh-pH diagrams: the Fe-O-H₂O system

The first thing to do is to identify the species of interest: $O_2(g)$, $H_2(g)$, $H_2O(I)$, Fe° , Fe^{2+} , Fe^{3+} , OH^- , H^+ and a selection of solid phases \rightarrow Fe_2O_3 and Fe_3O_4 or **Fe(OH)_3 and Fe(OH)_2**

The selection of solid phases is dependent on whether or not you wish to consider the presence of metastable phases that predominate because of kinetic constraints.

The next step is to define the boundaries between the various species based on mass-action law considerations.

```
The first consideration is the stability of liquid water.

•The upper stability boundary is defined by:

\frac{1}{4} O_2(g) + H^+ + \acute{e} \leftarrow \rightarrow \frac{1}{2} H_2O(I)

p\epsilon = 20.77 + \frac{1}{4} \log pO_2 - pH or

E_h = 1.23 + 0.015 \log pO_2 - 0.059 pH

•The lower stability boundary is defined by:

H^+ + e \leftarrow \rightarrow \frac{1}{2} H_2(g)

p\epsilon = -1/2 \log pH_2 - pH or

E_h = -0.0295 \log pH_2 - 0.059 pH
```

Eh vs pH diagram

Eh vs pH diagram

Let us now consider the boundary between $Fe(OH)_3$ and Fe^{3+}

$$Fe(OH)_{3} + 3H^{+} \leftrightarrow Fe^{3+} + 3H_{2}O$$

$$K^{o}_{eq} = (Fe^{3+})/(H^{+})^{3} \text{ or } \log K^{o}_{eq} = \log (Fe^{3+}) + 3 \text{ pH}$$

$$pH = 1/3 (\log K^{o}_{eq} - \log (Fe^{3+}))$$

$$= 1/3 (4.89 - \log (Fe^{3+}))$$

$$= 3.63$$

where the value of K°_{eq} is obtained from Gibbs free energies of the species involved in the reaction.

The limit of "solubility" is generally taken to be an activity of the dissolved species of 10^{-6} (~ 10^{-6} m). The choice is arbitrary but reasonable.

Let us now consider the boundary between $Fe(OH)_3$ and Fe^{3+}

$$Fe(OH)_{3} + 3H^{+} \leftrightarrow Fe^{3+} + 3H_{2}O$$

$$K^{o}_{eq} = (Fe^{3+})/(H^{+})^{3} \text{ or } \log K^{o}_{eq} = \log (Fe^{3+}) + 3 \text{ pH}$$

$$pH = 1/3 (\log K^{o}_{eq} - \log (Fe^{3+}))$$

$$= 1/3 (4.89 - \log (Fe^{3+}))$$

$$= 3.63$$

where the value of K^o_{eq} is obtained from Gibbs free energies of the species involved in the reaction.

The limit of "solubility" is generally taken to be an activity of the dissolved species of 10^{-6} (~ 10^{-6} m). The choice is arbitrary but reasonable.

The boundary for Fe³⁺ and Fe²⁺ is given by:

 $Fe^{3+} + e \leftrightarrow Fe^{2+}$

 $K_{eq}^{o} = (Fe^{2+})/((Fe^{3+})(\acute{e}))$ or log $K_{eq}^{o} = \log (Fe^{2+})/(Fe^{3+}) + p\epsilon$

 $p\epsilon = \log K_{eq}^{o} - \log (Fe^{2+})/(Fe^{3+})$ = 13.02 - log (Fe^{2+})/(Fe^{3+})

$$E_{h} = 0.77 - 0.059 \log (Fe^{2+})/(Fe^{3+})$$

Since the boundary is independent of pH, it must plot as a horizontal line. To draw the boundary, however, we must assign a value to the ratio (Fe²⁺)/(Fe³⁺), typically 1.

The boundary for Fe³⁺ and Fe²⁺ is given by:

 $Fe^{3+} + e \leftrightarrow Fe^{2+}$

 $K_{eq}^{o} = (Fe^{2+})/((Fe^{3+})(\acute{e}))$ or log $K_{eq}^{o} = \log (Fe^{2+})/(Fe^{3+}) + p\epsilon$

 $p\epsilon = \log K_{eq}^{o} - \log (Fe^{2+})/(Fe^{3+})$ = 13.02 - log (Fe^{2+})/(Fe^{3+})

$$E_{h} = 0.77 - 0.059 \log (Fe^{2+})/(Fe^{3+})$$

Since the boundary is independent of pH, it must plot as a horizontal line. To draw the boundary, however, we must assign a value to the ratio $(Fe^{2+})/(Fe^{3+})$, typically 1.

The boundary between $Fe(OH)_3$ and Fe^{2+} is given by:

given (Fe²⁺) =
$$10^{-6}$$

p ϵ = 23.9 - 3pH
E_h = 1.06 - 0.177 pH
- 0.059 log (Fe²⁺)
= 1.41 - 0.177 pH

The boundary between $Fe(OH)_3$ and Fe^{2+} is given by:

given (Fe²⁺) =
$$10^{-6}$$

p ϵ = 23.9 - 3pH
E_h = 1.06 - 0.177 pH
- 0.059 log (Fe²⁺)
= 1.41 - 0.177 pH

The Eh-pH diagram for the Fe-O-H₂O system

The boundaries involving $Fe(OH)_2$ are: $Fe(OH)_2 + 2H^+ \leftarrow \rightarrow Fe^{2+} + 2H_2O$ $K^{o}_{eq} = (Fe^{2+})/(H^+)^2$, $pH = \frac{1}{2} (\log K^{o}_{eq} - \log (Fe^{2+})) = \frac{1}{2} (12.4 - \log (Fe^{2+})) = 9.2$

 $E_{h} = 0.33 - 0.059 \text{ pH}$

The Eh-pH diagram for the Fe-O-H₂O system

The boundaries involving $Fe(OH)_2$ are: $Fe(OH)_2 + 2H^+ \leftrightarrow Fe^{2+} + 2H_2O$ $K_{eq}^{o} = (Fe^{2+})/(H^{+})^{2}$, $pH = \frac{1}{2} (\log K_{eq}^{o} - \log (Fe^{2+})) = \frac{1}{2} (12.4 - \log (Fe^{2+})) = 9.2$

Fe(OH)₃ + H⁺ + é ← → Fe(OH)₂ + H₂O

$$K^{o}_{eq} = 1/((H^{+})(\acute{e})),$$

pε = log $K^{o}_{eq} - pH$
= 5.53 - pH or
E_L = 0.33 - 0.059 pH

'n

The boundaries involving $Fe(OH)_2$ are: $Fe(OH)_2 + 2H^+ \leftrightarrow Fe^{2+} + 2H_2O$ $K^{o}_{eq} = (Fe^{2+})/(H^+)^2$, $pH = \frac{1}{2} (\log K^{o}_{eq} - \log (Fe^{2+})) = \frac{1}{2} (12.4 - \log (Fe^{2+})) = 9.2$

Fe(OH)₃ + H⁺ + é ← → Fe(OH)₂ + H₂O

$$K^{o}_{eq} = 1/((H^{+})(\acute{e})),$$

pɛ = log $K^{o}_{eq} - pH$
= 5.53 - pH or
 $E_{h} = 0.33 - 0.059 \text{ pH}$

ш

0.0

-0.4

-0.6

-0.8 -1.0

2 3

pН

Fe(OH)₂

pe-pH diagram for the Fe-O- H_2O system (with ferrihydrite)

FIGURE 7-5 pe-pH diagram for the system Fe-O-H₂O at 25°C with ferrihydrite (Fe(OH)₃) as the ferric oxide instead of hematite and Fe(OH)₂ instead of magnetite. Solidsolution boundaries are drawn for an activity of dissolved Fe species of 10^{-6} .

Fe³⁺ + H₂O ← → Fe(OH)²⁺ + H⁺ $K_{eq} = (Fe(OH)_{2}^{+})(H^{+})/(Fe^{3+}), pH = -\log K_{eq} + \log ((Fe(OH)_{2}^{+}/(Fe^{3+})) = 2.19$

The other boundaries are: $Fe(OH)^{2^+} + H_2O \leftrightarrow Fe(OH)_2^+ + H^+$, $\log K_{eq} = -3.48$, pH = 3.48 $Fe(OH)_3(s) + H^+ \leftrightarrow Fe(OH)_2^+ + H_2O$, $\log K_{eq} = -0.78$, pH = 5.22 for $(Fe(OH)_2^+) = 10^{-6}$ $Fe(OH)_3(s) \leftrightarrow Fe(OH)_3^\circ$, $\log K_{eq} = -7.67$.

FIGURE 7-6 pe-pH diagram for the system Fe-O-H₂O with ferrihydrite as the ferric oxide, including the hydrolyzed forms of Fe³⁺. Dashed lines are copied from Figure 7-5. Solid-solution boundaries are drawn for an activity of dissolved Fe species of 10^{-6} .

Fe(OH)²⁺ + é ← → Fe²⁺ + H₂O, and Fe(OH)₂⁺ + é + 2H⁺ ← → Fe²⁺ + 2H₂O Fe(OH)₄⁻ + 2H⁺ + é ← → Fe(OH)₂ + 2H₂O pe = log K_{eq} + log (Fe(OH)₄⁻) - 2pH

pe-pH diagram for the Fe-O- H_2O-CO_2 system

FIGURE 7-9 pe-pH diagram for the system Fe-O-H₂O-CO₂ at 25°C, considering the phases ferrihydrite, siderite, and Fe(OH)₂. Σ CO₂ = 10⁻² m. Solid-solution boundaries are drawn for an activity of dissolved Fe species of 10⁻⁶.

pe-pH diagram for the Fe-O- H_2O -S-CO₂ system

FIGURE 7-14 Stability relations in the system Fe–O–H₂O–S–CO₂ at 25°C, assuming ferrihydrite as the ferric oxide phase, $\Sigma S = 10^{-2}$ m and $P_{CO_2} = 10^{-3}$ atm. Solid-solution boundaries are drawn for an activity of dissolved Fe species of 10⁻⁶. Light lines are boundaries for sulfur species from Fig. 7-11.

Partial pressure or fugacity-fugacity diagrams

For the Fe₂O₃-Fe₃O₄ reaction, $3Fe_2O_3 \leftrightarrow 2Fe_3O_4 + \frac{1}{2}O_2$ $K_{eq} = (fO_2)^{1/2}$, log fO₂ = 2 log $K_{eq} = -70$ This plots as a horizontal line in both figures

For the following reaction, $Fe_2O_3 + 4H^+ \leftrightarrow 2Fe^{2+} + 2H_2O + \frac{1}{2}O_2$ $Log K_{eq} = 2 \log (Fe^{2+}) + \frac{1}{2} \log fO_2 + 4pH$ This plots as a line of slope -8 on the log fO₂-pH

 $FeCO_3$ - Fe^{2+} $FeCO_3 + 2H^+ \leftarrow \rightarrow Fe^{2+} + H_2O + CO_2$ $Log K_{eq} = log (Fe^{2+}) + log fCO_2 + 2pH$ This plots as a vertical line on a log fO₂-pH diagram

- Lake surface area -164 km²
- Depth >590 m
- Trophic status: oligotrophic
- Seasonality in region: Little temperature variation Dry vs. wet seasons

Physical and Chemical stratification

Oxic epilimnion, anoxic hypolimnion

• High (140 μ mol/L) concentration of Fe(II) in the hypolimnion

$p\epsilon$ -pH and E_h -pH diagrams

Fig. 4. pE versus pH diagrams for species of (a) nitrogen, (b) manganese, (c) iron, and (d) sulfur. Symbols are pE-pH coordinates for selected samples of Lake Matano waters. The bimodal distribution represents waters from the hypolimnion with low pE and pH values and waters from the epilimnion at relatively higher values.

From: Crowe et al. Limnol. Oceanogr. 2008

At a given pH, the oxidized species of couples having more positive Eh values can, theoretically, oxidize the reduced species of couples having a more negative Eh value and vice-versa.

Figure 11.10 The theoretical Eh (mV) of some important oxidationreduction couples at equal molar ion concentrations except as indicated below, at pH = 7 and 25°C. Crosshatched area gives Eh's for O₃(aq)/H₃O, where O₂(aq) ranges from 8.25 to 0.01 mg/L. Other conditions are: $NO_{3}/N_{2}(aq)$ at $N_{2}(aq) = 14 \text{ mg/L}$ (atmospheric $N_2 = 0.80$ bar), NO₅ = 62 mg/L; MnO2(pyrolusite)/ Mn2+ at $Mn^{2+} = 1 mg/L$; Fe(OH)₃/Fe²⁺ at Fe²⁺ = 1 mg/L assuming K_{sp} for Fe(OH)₃ = 10-38.5; SO4-/FeS3(pyrite) at Fe2+ = 1 mg/L and SO37 = 96 mg/L; and So(native sulfur)/H₂S(aq) at H₂S(aq) = 108 mg/L (10-15 mol/L). After D. Lang-

TABLE 11.3 The standard potential, E° , and Eh at pH = 7.0 and 25°C of some redox couples, assuming thermodynamic equilibrium for conditions listed in the table

Reaction	E° (volts)	Eh (volts) pH = 7.0	Assumptions
$4H^* + O_2(g) + 4c^2 = 2H_2O$	1.23	0.816	$P_{\rm O} = 0.2 {\rm bar}$
$NO_3^2 + 6H^2 + 5c^2 = \frac{1}{2}N_2(g) + 3H_2O$	1.24	0.713	$ NO_3 = 10^{-3} M$ $P_N = 0.8 \text{ bar}$
$MnO_2(pyrolusite) + 4H^2 + 2e^2 = Mn^{22} + 2H_2O$	1.23	0.544	$[Mn^{2*}] = 10^{-4.74} M$
$NO_3^{-} + 2H^{+} + 2e^{-} = NO_2^{-} + H_2O$	0.845	0.431	$[NO_3^-] = [NO_2^-]$
$NO_{2}^{-} + 8H^{+} + 6e^{-} = NH_{4}^{+} + 2H_{2}O$	0.892	0.340	$[NO_3^-] = [NH_4^+]$
$Fe(OH)_3 + 3H^+ + e^- = Fe^{2+} + 3H_2O$	0.975	0.014	$[Fe^{2+}] = 10^{-4.75} M$
$Fe^{2+} + 2SO_4^{2-} + 16H^+ + 14e^- = FeS_2(pyrite) + 8H_2O$	0.362	-0.156	$[Fe^{2+}] = 10^{-4.75} M$ $[SO_4^{2-}] = 10^{-3} M$
$S^{\circ}(rhombic) + 2H^{+} + 2e^{-} = H_2S(aq)$	0.144	-0.181	$[H_2S] = 10^{-3} M$
$SO_4^{2-} + 10H^+ + 8e^- = H_2S(aq) + 4H_2O$	0.301	-0.217	$ SO_4^{2-} = [H_2S]$
$HCO_3^- + 9H^+ + 8e^- = CH_4(aq) + 3H_2O$	0.206	-0.260	$ HCO_{3}^{-} = [CH_{4}]$
$H^+ + e^- = \frac{1}{2}H_2(g)$	0.0	-0.414	$P_{\rm H_2} = 1.0 \rm bar$
$HCO_{\overline{3}} + 5H^{+} + 4e^{-} = CH_{2}O(\text{organic matter}) + 2H_{2}O$	0.036	-0.482	$ \text{HCO}_{\overline{3}} = \text{CH}_{2}\text{O} $

Figure 8.14. Sequence of microbially mediated redox processes. The letters refer to the reactions given in Table 8.7.

Air contains 286 mg/L of O_2 at 25°C (~21% by volume). At saturation with atmospheric oxygen and 1 bar total pressure, water holds only 8.25 mg/L of dissolved oxygen (2.58 x 10⁻⁴ mol/L O_2) at 25°C. If we only consider organic matter as the potential reductant, it only takes 3.1 mg/L of dissolved organic carbon to consume the 8.25 mg/L of dissolved oxygen.

The diffusion coefficient of O_2 is about 2.05 x 10⁻¹ cm²/s in air but only on the order of 10⁻⁵ cm²/s in water, nearly four orders of magnitude slower.

Figure 11.12 Redox titration curve of a model groundwater system of initial composition shown in (a), which also describes the computed response in pE and Eh as specific species are reduced during the titration. The computed pH change during the titration is shown in (b). Numbered segments correspond to sequential reduction: (1) $O_2(aq)$, (2) NO₄, (3) MnO₂(s), (4) Fe(OH)₃(s), and (5) SO₄²⁻. From Scott and Morgan (1990). Reprinted with permission from M. J. Scott and J. J. Morgan. Energetics and conservative properties of redox systems. In *Chemical modeling of aqueous systems II*, ed. D. C. Melchior and R. L. Bassett, Am. Chem. Soc. Symp. Ser. 416, pp. 368–78. Copyright 1990 by the American Chemical Society.

Figure 11.16 Schematic cross-sections of groundwater systems contaminated by organicrich wastes. (a) Development of redox zones down gradient from a landtill in the groundwater flow direction (Baedecker and Back 1979). (b) Possible sequence of redox zones encountered in the groundwater flow direction from a source of organic contamination. After D. R. Lovley, F. H. Chapelle, and J. C. Woodward. Use of dissolved H. concentrations to determine distribution of microbially catalyzed redox relactions in anoxie, groundwater. *Envir. Sci. & Technol.* 28(7):1205–10. Copyright 1994 by American Chemical Society.

Figure 8.17. Redox components in groundwaters as a function of depth (unconfined sandy aquifer) below agricultural areas for 1988. NO_3^- -contaminated groundwaters emanate from the agricultural areas and spread through the aquifer. The redox boundary is very sharp, which suggests that the redox process is fast compared to the rate of downward water transport. The investigators (Postma et al., 1991) suggest that reduction of O_2 and NO_3^- occur by pyrite. (The lines given are based on equilibrium models.) (Adapted from Postma et al., 1991.)

Figure 8.19. Estimation of the variation in concentration of redox species during the flow path of an organic contaminant plume.