Sea-Level Change

Reference:

Walker and James, Facies Models, (Ch. 2)

Observations - 1

- Mapping of sedimentary rocks of different ages suggests that the sea (ocean) has repeated covered than drained from significant portions of North America
 - Periods of 10s to 100s of millions of years
 - "Sloss Sequences"

Observations - 2

 Examination of outcrops shows "cycles" which suggest that sea level has changed on periods of 10s of thousands to several million years

Observations - 3

 Sea level fluctuations of different timescales may be superimposed

- Conclusion: just by looking at one outcrop/region, we cannot be sure whether changes in sea level were caused by eustatic changes, tectonic movements or some combination of the two
- We use the term "relative sea level" to refer to interplay of eustatic and tectonic factors

- During ice ages, water is removed from the oceans and stored on land as glacial ice
 - This causes global sea level to fall
- During interglacials, continental glaciers melt, and water is returned to the oceans
 - This causes global sea level to rise

- Elevation of oceanic crust is a function of its age
- Young crust is hot, less dense, buoyant
- Crust cools, becomes dense and subsides with age
- Size of mid-ocean ridges is a function of spreading rates

Cross-sections through a spreading ridge

When spreading rates are high, ridges are formed of young, "buoyant" crust (right). The ridge swells and water spills out of the ocean onto land – sea level rises.

When spreading rates drop, the ridges shrink (left) and sea level drops.

level changes on periods of 10s to 100s of millions of yrs.

Table 1 Mechanisms of sea level change. From Reveile (1990).		
MECHANISMS	Time Scale (years)	Order of Magnitude
1) Ocean Steric (thermohaline) Volume Changes		
Shallow (0-500 m)	0.1 - 100	0 - 1 m
Deep (500-4000 m)	10-10,000	0.01 - 10 m
2) Glacial Accretion and Wastage		
Mountain Glaciers	10 - 100	01-1m
Greenland Ice Sheet	100 - 100 000	0.1 10 m
East Antarctic Ice Sheet	1.000 - 100.000	10 - 100 m
West Antarctic Ice Sheet	100 - 10,000	1 – 10 m
3) Liquid Water on Land		
Groundwater Aquifers	100 - 100 000	0.1 10 -
Lakes and Reservoirs	100 - 100,000	0.01 - 0.1 m
4) Crustel Deformation		
Lithosphere Formation and Subduction	100.000 - 108	
Glacial isostatic Rebound	100 - 10 000	7 - 100 m
Continental Collision	100 000 - 105	10 - 100 m
Seafloor and Continental Epiropeny	100.000 - 108	10 100 m
Sedimentation	10,000 - 108	1 - 100 m

Other mechanisms for sea level change

- 2nd Order Cycles: changes of sea level over 10s of millions of years
 - Primarily eustatic
 - Related to global tectonic factors (e.g., spreading rates)
 - "Sloss Sequences"
 - Easy to correlate (biostratigraphy, absolute dating, seismic stratigraphy, etc.)

Mechanisms

- 3rd Order Cycles: changes of sea level over millions of years
 - Eustatic? No mechanism that seems to "work" throughout much of Phanerozoic
 - Regional subsidence/uplift?
 - Difficult to correlate globally (biostratigraphy, absolute dating often not accurate enough)
 - May be correlated regionally (biostratigraphy, seismic stratigraphy, etc.)

- 4th Order Cycles: changes of sea level over 100s of thousands of years
 - Eustatic? Glacial cycles doesn't work for all of Phanerozoic
 - Changes in sediment supply/deltaic lobe switching/etc. (see later)
 - Quaternary cycles may be correlated globally (isotopes, biostratigraphy)
 - Local correlations wireline logs, seismic data, outcrops, etc.

Relationships between sea level and sedimentation

- As (relative) rises and falls, different parts of the continent are exposed/flooded
- Different types of depositional systems are preferentially developed at different times

Relationships between sea level and sedimentation

- In a later section, we will be emphasizing how changes in relative sea level affect how/where different depositional environments develop
- We will develop and use sequence stratigraphic concepts to understand the relationships between sea-level change, sediment accumulation and the nature of the stratigraphic record

Summary

- The sedimentary record holds evidence of sea-level changes on many different timescales
- Global sea level changes "eustacy"
- Local/regional subsidence or uplift can also cause sea level change in a given area
- Combination of eustacy and vertical tectonic movements causes changes in *relative* sea level

Summary

- Many different processes can be responsible for causing eustatic or relative sea-level change
- Changes in sea level can affect where/when certain depositional environments develop
 - Will expand upon this later in the course