

Shoreface/Shelf

- Definitions (zones)
- Waves, wave-induced currents
- Sedimentary structures
- Vertical successions

Definitions

- Linear strandplains
 - Wave-dominated coastal zones
 - Multiple sediment sources
 - No deltaic "protuberance"
 - Not common now
 - Common at other times in the geologic record (e.g., Cretaceous Western Interior Seaway)

- Geologists/engineers/geomorphologists/ oceanographers
- Between geologists

Waves, wave-induced currents

- Waves start to deform as they move into shallow water
 - Tend to refract crestlines tend to become parallel to shoreline
 - Waves become steeper
 - Waves become asymmetric
 - Waves may eventually break/spill

Waves, wave-induced currents • Waves induce various types of currents: • Longshore currents • Generated by alongshore component of breaking waves • Shore parallel – surf zone • Rip currents • Shoaling waves push water toward shore – builds up • Built-up water moves suddenly seaward as a

- discrete (relatively narrow) shore-normal
- current move out beyond surf zone

Waves, wave-induced currents

- Large storms may push water landward
 - "Storm surge", coastal setup
 - Different, much larger scale than processes forming rip currents
- Water ponded up against shore eventually moves seaward along seafloor
 - Relaxation flow", coastal downwelling

Sedimentary Structures Beachface/swash zone Thin, fast water motion Upper flow regime flat bed Planar lamination Antidunes – preserved? Bioturbation: Macaronichnus (sometimes...)

Sedimentary Structures

Shoreface

- Skolithos ichnofacies
 Skolithos, Ophiomorpha, Arenicolites
- Seafloor constantly agitated by waves, even during "fairweather" conditions
- No mud deposited

Sedimentary Structures

Shelf

• Cruziana ichnofacies – inner shelf

- Teichichnus, Rhizocoralium, Cruziana (Paleozoic rocks – trilobites)
- Laminated-to-burrowed beds (storm beds)

Sedimentary Structures

- Not all shelves are prograding
- Holocene transgression cuts off sediment supply
 - Trapped in estuaries, doesn't make it onto shelf
- Shelf exposes "relict" sediments, deposited under other conditions ("Palimpsest")
 - Fluvial, deltaic, shoreface, etc.
 - Lower sea level
- Reworked by shelf currents, etc.

Morphology & Processes

- Interaction between river discharge and basinal waters:
 - Homopycnal densities about the same (lacustrine deltas)
 - Hyperpycnal river water denser than ambient water (glaciolacustrine deltas)
 - Hypopycnal river water less dense than ambient water (almost all marine deltas)

Morphology & Processes Rapid sedimentation on deltas, especially near river mouths, leads to submarine slope instability Oversteepening

High pore pressures

Morphology & Processes

- Relative role of waves, tides and fluvial processes important
- Need to also consider grain size
- Also depth of water into which delta forms
 - May depend on sea level sequence stratigraphy

River-Dominated Deltas

- Supply > redistribution/reworking
- Progradation around river mouths
- "Birdfoot"
- Complex facies distributions
- · Mississippi is "classic"
 - But humanity's influence: fixing channel position, dredging, etc.

Morphology & Processes

Vertical succession:

- Coarsening-upward
- Sedimentary structures show evidence of waves (see "Shoreface" section)
 - Trough cross-bedding
 - Hummocky cross-stratification
 - Swaley cross-stratification
 - Wave ripples
- Lobate outline indicates delta rather than strandplain
 - Need to be able to map it

Controls on Deltaic Architecture

- Interplay of river, wave and tidal influences, grain size affects morphology/stratigraphy of any delta
- Through time (1000s, 10000s of years or more) delta growth affected by factors such as basin subsidence (tectonic, compaction), changes in sea level, river avulsion, changes in sediment supply, etc.

Morphology & Processes

- Delta grows in proximity to river mouth
 - Sediment supplied by river
- Away from river mouth, delta reworked by waves, tidal currents
- "Constructive" and "Destructive" phases – both may be depositional

Controls on Deltaic Architecture

Autocyclic

- Determined by the system itself
- Lobe switching, compaction-induced subsidence
- Allocyclic
 - Determined by external forcing
 - Sea-level change, climate, tectonic subsidence, etc.

Alternating shale (dark)/sandstone (light) laminations

Shale is mud deposited at slack water

Cretaceous Horseshoe Canyon Fm., Drumheller

Processes and Facies Coastal plain features, characterized by the interaction of a tidal prism and freshwater discharge Characteristic circulation types and sedimentary response patterns Drowned river valleys

"Geologist's Definition"

Sequence Stratigraphy of Paralic Successions

- In a simple world, progradation of shoreface/shelf systems and deltas occurs during highstand
 - Highstand systems tract (HST)
 - Between Maximum Flooding Surface and Sequence Boundary

Sequence Stratigraphy of Paralic Successions

- In reality, progradation/transgression can occur at any point on relative sea level curve – depends on interplay between sediment supply and accomodation (relative sea level)
 - But "usually" (?) during highstand

Sequence Stratigraphy of Paralic Successions Parasequences develop in response to "episodic" (non-uniform) progradation Relatively short-lived changes in: Sediment supply (Climate? Tectonism?) Relative sea level (Subsidence? Eustacy?) Autocyclic processes (e.g., deltaic lobe switching)

 Ultimately, causes of parasequence development may be an intractable problem

Parasequences - Cretaceous Clastics, Alberta

Sequence Stratigraphy of Paralic Successions Parasequence stacking patterns reflect longer-term interplay between sediment supply and accomodation

Sequence Stratigraphy of Paralic Successions

- Shelf-margin deltas form at shelf margin
 - Commonly, but not always, at relative sea level lowstand
 - Feed lowstand fans/aprons
- Shelf-perched deltas system did not prograde all the way to shelf margin
 - Do not feed lowstand fans/aprons

Sequence Stratigraphy of Paralic Successions

As relative sea level begins to rise:

- Rising base level sediment trapped in coastal plain
- Drowning of river valleys sediment trapped in estuaries
- Shorelines get cut off from clastic sediment supply -> transgression
- Development of flooding surfaces

Sequence Stratigraphy of Paralic Successions

- Interplay of eustatic sea level change, sediment supply, subsidence (rates, patterns), basin morphology, etc. cause changes in systems tract development from basin to basin, and over time within a single basin
 - Don't always see all systems tracts (fully) developed

Summary

 Paralic successions influenced by changes in relative sea level, sediment supply (type, rate), basin morphology (ramp, shelf), "basinal processes" (waves, tides)

Shoaling upward succession

Summary

- Deltas shoreline protuberances at river mouths
 - Morphology, stratigraphic succession record interaction between fluvial and basinal processes
 - Typical stratigraphic expression: shoaling upward succession

Summary

- Estuaries drowned river valleys
 - Generally developed during transgression/relative sea level rise
 - Stratigraphic succession records "upward deepening"

Summary

- Systems tract/surface development depends on a variety of factors
 - Eustatic sea level
 - Sediment supply
 - Subsidence
 - Basin morphology
 - Etc.
- Will vary from basin to basin, and over time within a given basin