Mineralogy

Minerals – chemical compounds that form naturally as solids with shapes determined by the arrangement of atoms, e.g., quartz (SiO₂).

Crystals – the morphological manifestation of a mineral, e.g., quartz crystals commonly comprise hexagonal prisms topped by hexagonal pyramids and halite (NaCl) crystals commonly occur as cubes.

World's largest crystals: A cave in the Naica Lead Zinc mine, Mexico

Miners in Cueva de los Crystals: the mineral gypsum

Crystals of a variety of gypsum $(CaSO_4.2H_2O)$ precipitated from hot water at 60 degrees celsius in a limestone cave in the Naica mine

Minerals

Tourmaline on Feldspar

Emerald

$\begin{array}{l} \mathsf{Beryl}\\ (\mathsf{Be}_3\mathsf{Al}_2(\mathsf{SiO}_3)_6\end{array} \end{array}$

Pyrite (FeS₂) crystals

Feldspars – two of the most important rock-forming minerals

Colours and forms of quartz

Quartz crystals displaying prism and pyramid faces

Crystal Shapes

Crystals have ordered arrangements of atoms

Order

X-ray beam splits into numerous smaller beams. Interference of waves of different beams produces a diffraction pattern on a screen or film. The pattern indicates the spacing and arrangement of atoms.

Surface of galena (PbS) imaged With an atomic force microscope

Atomic structure of galena (PbS)

The atomic structure of halite (NaCl) Ionic bonding

Ionic bonding – transfer of electrons

Relative sizes of ions

The atomic structure of diamond Covalent bonding

(d)

The source of Diamonds

The 'Big Hole' at Kimberly, South Africa

Kimberlite containing diamond

(a)

Cutting diamonds

Covalent bonding – sharing of electrons

Unshared electron

Shared electron

Atomic structure of graphite

Covalent bonding within sheet Van der Waal's bonding between sheets

(f)

Ice Crystals

Hydrogen bonding

The silicon tetrahedron

Silicate Structures

Nesosilicate

Olivine (Fe,Mg)₂SiO₄

Hypersthene (Fe,Mg)SiO₃

Inosilicate (Double Chain)

Amphibole

Tremolite Ca₂Mg₅Si₈O₂₂(OH)₂

Riebeckite Na₂Fe₅Si₈O₂₂₍OH)₂

Biotite $KAI(Fe,Mg)_3Si_3O_{10}(OH)_2$

$\begin{array}{c} Muscovite \\ KAI_{3}Si_{3}O_{10}(OH)_{2} \end{array}$

Asbestos

Uses and risks

(Insulation, heat, fire resistance)

Serpentine (Mg₃Si₂O₅(OH)

Relationship of Quartz structure to Feldspar Structure

Imagine four SiO₂ molecules 4 x SiO₂ = Si₄O₈

Substitute AI³⁺ for Si⁴⁺ in one of these molecules

 $SiO_2 + AIO_2 + SiO_2 + SiO_2 = AISi_3O_8^-$

Add Na⁺ or K⁺ to supply missing charge = NaAlSi₃O₈ or KAlSi₃O₈

 $SiO_2 + AIO_2 + AIO_2 + SiO_2 = AI_2Si_2O_8^{2-1}$

Albite K-Feldspar

Add Ca²⁺ to supply missing charge = CaAl₂Si₂O₈ Anorthite