Metamorphism: A Process of Change

Edited and augmented for this course by

Olivia Jensen Professor of Geophysics McGill University Montreal, Canada

Updated by:

Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared by:

Ronald L. Parker, Senior Geologist Fronterra Geosciences Denver, Colorado

Introduction

- Metamorphic rock—solid-state alteration of a protolith.
 - Meta = change.
 - Morphe = form.
- Protoliths are preexisting rocks.
- Metamorphism can alter any protolith.

Introduction

- Protoliths undergo slow solid-state changes in:
 - Texture.
 - Mineralogy.
- Metamorphic changes are due to variations in:
 - Temperature.
 - Pressure.
 - Tectonic stresses.
 - Amount of reactive water.

What Is a Metamorphic Rock?

Metamorphism changes mineralogy.

- Red shale -- quartz, clay, and iron oxide.
- Gneiss -- quartz, feldspar, biotite, and garnet.

What Is a Metamorphic Rock?

Metamorphism changes texture.

• Unique texture -- intergrown and interlocking grains.

What Is a Metamorphic Rock?

Metamorphism often creates foliation.

- A texture defined by:
 - Alignment of platy minerals (i.e., micas), or:
 - Creation of alternating light/dark bands.

- Recrystallization—minerals change size and shape.
- Mineral identity need not change.
 - Example: Limestone Marble.

- Phase change—new minerals form with:
 - The same chemical formula.
 - Different crystal structure.
 - ► Example: <u>Andalusite</u> → <u>Kyanite</u>.

Neocrystallization—new minerals form from old.

- Initial minerals become unstable, change to new minerals.
 - Original protolith minerals are digested in reactions.
 - Elements restructure to form a new mineral assemblage.

Pressure solution—mineral grains partially dissolve.

- Dissolution requires small amounts of water.
- Minerals dissolve where their surfaces press together.
- Ions from the dissolution migrate in the water film.

Plastic deformation—mineral grains soften and deform.

- Requires elevated temperature and pressure.
- Rock is squeezed or sheared.
- Minerals change shape without breaking like a plastic.

Causes of Metamorphism

- The agents of metamorphism are:
 - Heat (T).
 - Pressure (P).
 - Compression and shear.
 - Hot fluids.
- Not all agents are required; they often do co-occur.
- Rocks may be overprinted by multiple events.

Metamorphism Due to Heat (T)

One cause of metamorphism is heat.

- Most metamorphism occurs between 250°C and 850°C.
- Between diagenesis and melting (up to 1200°C).
- Heat energy breaks and reforms atomic bonds.
 - Solid-state diffusion: migration of atoms between grains.
 - New minerals form.

Metamorphism Due to Pressure (P)

- P increases with depth in the crust.
 - Metamorphism occurs mostly in 2–12 kbar range; that is between about 5km and 40km depth
- Increase in P packs atoms more tightly together.
 - Creates denser minerals.
 - Involves phase changes or neocrystallization.
- Formation and stability of many minerals depends on both P and T.

Metamorphism via Compression

- Compression stress greater in one orientation.
- Different from pressure (P), which is equal in all directions.
- Compression is a common result of tectonic forces.

Metamorphism via Shear

Shear—moves one part of a material sideways.

- Causes material to be smeared out.
- Like sliding out a deck of cards.

Compression and Shear

- Compression and shear applied together causes mineral grains to change shape.
 - Equant—roughly equal in all dimensions.
 - Inequant—dimensions not the same.
 - Platy (pancake-like)—one dimension shorter (i.e., micas).
 - Elongate (cigar-shaped)—one dimension longer (i.e., staurolite).
- Preferred orientation of inequant minerals is a common feature of metamorphic rocks.

Development of Preferred Orientation

Compression and shear combine with elevated T and P.

- Cause rocks to change shape without breaking.
- Internal textures of deforming rocks can also change.
 - Minerals rotate into preferred orientations.
 - Minerals grow in preferred directions relative to stretching.

Hydrothermal Fluid Metamorphism

- Hot water with dissolved ions and volatiles.
- Hydrothermal fluids facilitate metamorphism.
 - Accelerate chemical reactions.
 - Alter rocks by adding or subtracting elements.
- Hydrothermal alteration is called metasomatism.

It is often associated with mineralization of ore deposits On <u>ore genesis</u>

Types of Metamorphic Rocks

Two major subdivisions—foliated and nonfoliated.

- Foliation—parallel surfaces or layers in metamorphic rocks.
 - Alignment of inequant grains or compositional banding.
 - Classified by composition, grain size, and foliation type.

Types of Metamorphic Rocks

Two major subdivisions of metamorphic rocks.

- Nonfoliated—no planar fabric evident.
 - Minerals recrystallized without compression or shear.
 - Comprised of equant minerals only.
 - Classified by mineral composition.

Slate—fine-grained, low grade metamorphic shale.

- Has a distinct foliation called slaty cleavage.
 - Develops by parallel alignment of platy clay minerals.
 - Slaty cleavage develops perpendicular to compression.
 - Slate breaks along foliation creating sheets used for roofing.

Metamorphic Grade

Phyllite—fine-grained mica-rich rock.

- Formed metamorphism of slate.
- Clay minerals neocrystallize into tiny micas.
- Has silky sheen called phyllitic luster.
- Phyllite is between slate and schist.

Metaconglomerate—metamorphosed conglomerate.

- Pebbles and cobbles are flattened by:
 - Pressure solution.
 - Plastic deformation.
- Foliation is defined by the flattened clasts.

Schist—fine to coarse rock with larger micas.

- Forms at higher temperature than does phyllite
- Has a distinct foliation from large micas called schistosity.
- Schist has abundant large micas—biotite and muscovite.

Gneiss—distinct compositional bands, often contorted.

- Light bands of felsic minerals (quartz and feldspars).
- Dark bands of mafic minerals (biotite or amphibole).

Nuvvuagittuq Faux Amphibolites

The source magma that formed this metamorphic rock has been age-dated to 4.28Ga.

The Earliest Mineral on Earth

This zircon crystal found in the Jack Hills region of Western Australia is the oldest known mineral grain on Earth: 4.404Ga.

Jack Hills of Western Australia

Images from: http://geoscience.wisc.edu/geoscience/people/faculty/john-valley/the-earliest-piece-of-the-earth/

Gneissic banding develops in several ways.

- Original layering in the protolith.
- Extensive high-T shearing.
- Metamorphic differentiation: minerals segregate into different layers.

- Compositional banding —solid-state differentiation.
- Chemical reactions segregate light and dark layers.

- Migmatite is a partially melted gneiss.
- It has features of igneous <u>and</u> metamorphic rocks.
- Mineralogy controls behavior.
 - Light colored (felsic) minerals melt at lower T.
 - Dark colored (mafic) minerals melt at higher T.

The felsic bands melt and recrystallize in the gneiss.

- Nonfoliated rocks lack a planar fabric.
 - Absence of foliation possible for several reasons:
 - Rock not subjected to differential stress.
 - Dominance of equant minerals.
 - > Absence of platy minerals like clays or micas.

- Hornfels—fine-grained, variety of metamorphic clay minerals that sedimented as mudstone protolith.
 - Associated with plutonic intrusions.
 - Composition depends on protolith, pressure, temperature.

Nonfoliated Metamorphic Rocks

- Quartzite—almost pure quartz in composition.
 - Forms by alteration of quartz sandstone.
 - Sand grains in the protolith recrystallize and fuse.
 - Like quartz, it is hard, glassy, and resistant.
 - Breaks by conchoidal fracture cutting through grains.

Nonfoliated Metamorphic Rocks

- Marble—coarsely crystalline calcite or dolomite.
 - Forms from a limestone protolith.
 - Extensive recrystallization completely changes the rock.
 - Original textures and fossils in the parent are obliterated.
 - A favorite stone for sculpture.
 - Exhibits a variety of colors.
 - Marble may have color banding

Metamorphic Grade

- Different minerals are stable as T and P changes.
- Metamorphic grade is a measure of intensity.
 - Low grade—weaker metamorphism.
 - High grade—intense metamorphism.

Metamorphic Grade

- Metamorphic grade determines mineral assemblages.
- As grade increases, new and larger minerals form.

Low Grade → Intermediate Grade → High Grade

Metamorphic Grade

Example: increasing metamorphism of shale protolith.

- Low grade—shale protolith.
 - Clays recrystallize into larger, aligned clays to yield a slate.
 - Clays neocrystallize into tiny, aligned micas in a phyllite.
- Intermediate grade
 - Micas recrystallize and grow large to form a schist.
 - New minerals grow in the schist.
- High grade
 - Micas decompose; elements recombine into new minerals.
 - Neocrystallization yields quartz and feldspars in a gneiss.

Index Minerals

- Index minerals indicate a specific P and T range.
- Metamorphic Zones are defined by index minerals.
- Index mineral maps.
 - Define metamorphic zones.
 - Boundaries are *isograds*.

Metamorphic Facies

- Mineral assemblages from a specific protolith at specific P and T conditions.
- Create rocks that are predictably similar.
- Named for a dominant mineral.

Metamorphic Environments

The types (and settings) of metamorphism are:

- Thermal or Contact—heating by a plutonic intrusion.
- Burial—increases in P and T by deep burial in a basin.
- Dynamic—shearing in a fault zone.
- Regional—P and T alteration due to orogenesis.
- Hydrothermal—alteration by hot water leaching.
- Subduction—high-P/low-T alteration in subduction zones.
- Shock—extreme high P resulting from a bolide impact.

Thermal (Contact) Metamorphism

- Due to heat from magma invading host rock.
- Creates zoned bands of alteration in host rock.
 - Called a contact (or metamorphic) aureole.
 - The aureole surrounds the plutonic intrusion.
 - Zoned from high (near pluton) to low grade (far from pluton).

Burial Metamorphism

As sediments are buried in a sedimentary basin:

- P increases because of the weight of the overburden.
- T increases because of the geothermal gradient.
- At about 8–15km depth, metamorphic reactions begin.

Dynamic Metamorphism

- Breakage of rock by shearing at a fault zone.
- Fault location determines type of alteration.
 - Shallow crust—upper 10–15 km.
 - Rocks behave in a brittle fashion.
 - Mineral grains crush forming fault breccia.
 - Deeper crust—below 10–15 km.
 - Rocks are ductile.
 - Minerals smear like taffy to form mylonite.

Dynamothermal Metamorphism

- Also called "Regional Metamorphism"
- Tectonic collisions deform huge "mobile belts."
 - Rocks caught up in mountain building are:
 - Heated via the geothermal gradient and plutonic intrusions.
 - Squeezed and heated by deep burial.
 - Smashed and deformed by compression and shearing.

Hydrothermal Metamorphism

- Alteration by hot, chemically aggressive water.
- A dominant process near mid-ocean ridge magma.
 - Cold ocean water seeps into fractured crust.
 - Heated by magma, this water then reacts with mafic rock.
 - The hot water rises and is ejected via black smokers.

Serpentinization...

A low temperature metamorphic process that often occurs in the ultramafic rocks near mid-ocean ridges...

 Olivine in contact with water at relatively low temperatures forms
<u>serpentinite</u> rocks

Subduction Metamorphism

- Subduction creates the unique blueschist facies.
- Trenches and accretionary prisms have:
 - A low geothermal gradient—low T, high P.
 - These conditions favor glaucophane, a blue amphibole mineral.

Shock Metamorphism

- Rarely, Earth is struck by a comet or asteroid.
- Impacts generate a compressional shock wave.
 - Extremely high pressure.
 - Heat that vaporizes or melts large masses of rock.
- These conditions generate high-pressure minerals.

Exhumation

How do metamorphic rocks return to the surface?
Exhumation is due to uplift, collapse, and erosion.

Finding Metamorphics

- Large regions of ancient high-grade rocks—called shields—are exposed in continental interiors.
- Shields are eroded remnants of orogenic belts.
 - Shield rocks form the basement under sedimentary cover.

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

dited and augmented for this course b Olivia Jensen

Professor of Geophysic

Montreal, Canada

Updated by: **Rick Oches**, Professor of Geology & Environmental Sciences **Bentley University Waltham, Massachusetts**

Based on slides prepared by:

Ronald L. Parker, Senior Geologist Fronterra Geosciences Denver, Colorado

Mountains

- Mountains are attractive landscape features.
- They provide vivid evidence of tectonic activity.
- They are manifestations of geologic processes.
 - Uplift
 - Deformation
 - Metamorphism (Note: studying metamorphism can tell us much about the history of a mountain range.)

Mountains

Mountains frequently occur in elongate, linear belts.
Mountain building is a process called orogenesis.

Orogenisis – the building of Mountains

- Mountains are born and have a finite life span.
 - Young mountains are high, steep, and still growing upward.
 - Middle-aged mountains are lowered by erosion.

Deformation changes the character of the rocks.

- Undeformed (unstrained):
 - Horizontal beds, spherical sand grains, no folds or faults
- Deformed (strained):
 - Tilted beds, metamorphic alteration, folding and faulting

Deformation results in one or all of the following:

- Displacement—change in location
- Rotation—change in orientation
- Distortion—change in shape
- Deformation is often easy to see.

Displacement—change in location by faulting

<u>Greenschist</u>: low grade metamorphic rock

Rotation—change in orientation

Brittle vs. Ductile Deformation

There are two major deformation types: brittle and ductile.

- The type of deformation depends on:
 - Temperature
 - Pressure
 - Deformation rate
 - Composition

Brittle vs. Ductile Deformation

Brittle deformation—rocks break by fracturing.

Brittle deformation occurs in the shallow crust.

Brittle vs. Ductile Deformation

Ductile—rocks deform by flowing and folding.

- Occurs at higher P and T in the deeper crust.
- Transition to ductile deformation occurs at about 10–15 km depth in the continental crust.

Stress, strain and fracture

Compression takes place when an object is squeezed.

- Horizontal compression drives collision.
 - Shortens and thickens material.

Stress

Tensions occur when the ends of an object are pulled apart.

- Horizontal tension drives crustal rifting.
 - Stretches and thins material.

Stress

Shear develops when surfaces slide past one another.

• Shear stress neither thickens nor thins the crust.

Stress

Pressure occurs when an object feels the same stress on all sides.

Geologic Structures

Geometric features are created during rock deformation.

- Planar and linear features are present in deformed rock.
- The 3-D orientation of a plane is described by strike and dip.
 - Strike—horizontal intersection with a tilted surface.
 - Dip—the angle of the surface down from the horizontal.

Joints and Veins

- Joints are planar rock fractures without any offset.
- They develop from tensile tectonic stress in brittle rock.
 - Systematic joints occur in parallel sets.
- Joints often control weathering of the rock they occur in.

Joints and Veins

- Groundwater often flows through joints.
- Dissolved minerals in groundwater precipitate in joints.
- Joints filled with minerals are called veins.

Faults

Faults are planar fractures showing displacement.

- They are abundant in the crust and occur at all scales.
- Sudden movements along faults cause earthquakes.
- Faults can be active or inactive.

Fault Orientation

On a dipping fault, the blocks are classified as the:

- Hanging-wall block (above the fault), and the
- Footwall block (below the fault).

When you stand in a tunnel excavated along the fault:

- Your head is near the hanging-wall block.
- You are standing on the footwall block.

Fault Classification

- Fault geometry varies—vertical, horizontal, dipping.
- The relative motion of the offset blocks varies.
 - Dip slip—blocks move parallel to the dip of the fault.
 - Strike slip—blocks move parallel to fault plane strike.
 - Oblique slip—components of both dip slip and strike slip.

Normal Faults

- The hanging wall moves down relative to the footwall.
- They accommodate crustal extension (pulling apart).
- The fault below shows displacement and drag folding.

Reverse and Thrust Faults

- The hanging wall moves up relative to the footwall.
- Reverse faults—fault dip is steeper than 35°.
- Thrust faults—fault dip is less than 35°.
- They accommodate crustal shortening (compression).

Thrust Faults

- Reverse fault with a gentle dip
- Results in crustal shortening.
- Often the result of continental collisions.

Strike-Slip Faults

- Fault motion is parallel to the strike of the fault.
- Usually vertical, no hanging-wall/footwall blocks.
- Classified by the relative sense of motion.
 - Right lateral—opposite block moves to observer's right.
 - Left lateral—opposite block moves to observer's left.
- Large strike-slip faults may slice the entire crust.

Faults

- Faults may offset large blocks of Earth.
- The amount of offset is a measure called displacement.
- The San Andreas (below)—displacement of hundreds of kms.

Ductile Deformation

- Layered rock may be deformed into complex folds.
- Folds occur in a variety of shapes, sizes, and geometries.
- Orogenic settings produce large volumes of folded rock.
- Folded rock may record multiple events of deformation.

An anticline is a fold that looks like an arch. The limbe dim out and away from the bings

The limbs dip out and away from the hinge.

A syncline is a fold that opens upward like a trough.

The limbs dip inward and toward the hinge.

A monocline is a fold-like carpet draped over a stair step.

- These faults do not cut through to the surface.
- Displacement folds the overlying sedimentary cover.

Folds are described by the geometry of the hinge.

- A plunging fold has a hinge that is tilted.
- A nonplunging fold has a horizontal hinge.

- Sheep Mountain, Wyoming, is a plunging fold.
- Large plunging folds create prominent landforms.
 - Resistant sandstones form highs; eroded shales are lows.

Some large folds yield a circular outcrop pattern.

- A dome is a fold that looks like an overturned bowl.
- A basin is a fold shaped like an upright bowl.

Despite circular landforms, these are quite different.

- A dome exposes older rocks in the center.
- A basin exposes younger rocks in the center.

Forming Folds

Folds develop in two ways: flexural slip and passive flow.

- In flexural slip, layers slide past one another.
- It is like the movement when a deck of cards is bent.

Forming Folds

Folds develop in two ways: flexural slip and passive flow.

• Passive-flow folds form in hot, soft, ductile rock at high T.

Forming Folds

Horizontal compression causes rocks to buckle.

Shear causes rocks to fold over on themselves.

Mountain Building

Mountain uplift is driven by plate tectonics.

- Convergent plate boundaries
- Continental collisions
- Rifting

Linear plate boundaries make linear mountain belts.

Subduction (convergent) boundaries create mountains.

- Compression shortens and uplifts overriding plate.
- A fold-thrust belt develops landward of the orogen.
- Thrust faults merge, forming a <u>detachment</u> at depth.

Exotic terranes may be added to subduction margins.

- Consist of island fragments of continental crust.
- Too buoyant to subduct; sutured onto the upper plate.
 - Terrane geology is very different from that of surroundings.
 - Western North America has numerous exotic terranes.
- Accretionary Orogens form.

Continental collision follows ocean basin closure.

- Complete subduction of oceanic lithosphere.
- Brings two blocks of continental lithosphere together.
- Buoyant continental crust shuts down subduction.

Crustal thickening results from continental collisions.

- Fold-thrust belts created on margins of the orogen.
- Center of belt consists of high-grade metamorphic rocks.
- Crust in collision zone may be twice its normal thickness.
- Thrusting brings metamorphic rocks up to shallow depths.

Continental rifting creates mountains.

- Normal faulting creates fault-block mountains and basins.
- Decompressional melting adds volcanic mountains.

Forming Rocks in and near Mountains

Orogeny leads to the formation of all three rock types.

- Igneous activity beneath collisions and rift zones
- Erosion of uplifted rocks and sedimentation in basins
- Metamorphism associated with continental collisions

Modern Orogenesis

- Modern instrumentation can measure mountain growth.
- Global positioning systems (GPS) measure rates of:
 - Horizontal compression
 - Vertical uplift

Mountain Topography

Mountains require elevation changes on Earth's surface.
 Mount Everest is 8.85 km above sea level and is made of sediments deposited in ocean water.

Why are Mountains High?

Surface elevation is a balance between forces; isostasy.

- Gravitational attraction pulls plates into the mantle.
- Buoyancy floats lithosphere on top of the mantle.
- Adding or removing weight resets isostatic equilibrium.
- Change in lithospheric thickness or density alters isostasy.

Isostasy

Convergent-margin horizontal compression causes:

- Horizontal shortening
- Vertical thickening
- These processes can double crustal thickness.
- A thick crustal root develops beneath mountain ranges.

Why Are Mountains High?

Adding igneous rock can thicken the crust.

- Volcanic material is added to the surface.
- Plutons are added at mid-crustal levels.

Why Are Mountains High?

Removal of lithospheric mantle can cause uplift.

- Similar to removing ballast from a ship—rises in water.
- The Tibet Plateau bears evidence of <u>delamination</u>.

Why Are Mountains High?

Thinning and heating lithosphere during rifting

- Rising asthenosphere heats lithosphere.
- Heated lithosphere is less dense, rises.
- Creates elevated mid-ocean ridge mountains.

What Goes Up...

- Mountains reflect a balance between uplift and erosion.
- Mountains are steep and jagged due to erosion.
- Rock characteristics control erosion.
 - Resistant layers form cliffs.
 - Easily eroded rocks form slopes.

Himalayan Plateau

The <u>Himalayas</u> are uplifted through the collision of the Indian plate with the Eurasian plate. India is still pushing northward at about 4 cm/yr relative to the Eurasian plate.

...Must Come Down

- The Himalayas are the maximum height possible. Why?
- There is an upper limit to mountain heights.
 - Weight of high mountains overwhelms rock strength.
 - Orogenic collapse—deep, hot rocks forced outward.
 - The mountains then collapse downward like soft cheese.
- Uplift, erosion, and collapse exhume deep crustal rocks.
 - Unroofing, or exhumation

Cratons

- A craton is crust that hasn't been deformed in 1 Ga.
- Low-geothermal gradient; cool, strong, and stable crust.
 - Two cratonic provinces.
 - Shields—Precambrian metamorphic and igneous rocks.
 - Platforms—shields covered by layers of Phanerozoic strata.

Cratonic Platforms

- Sedimentary rocks covering Precambrian basement.
- Series of domes and basins
 - Thick accumulations of sediment in basins
 - Erosion created bull's-eyeshaped domes.
- Formation called <u>epeirogeny</u>.

