Patterns in Nature: Minerals

dited and augmented for this course by

Olivia Jensen

Professor of Geophysics McGill University Montreal, Canada

Peridot (gemstone olivine)

Updated by: **Rick Oches**, Professor of Geology & Environmental Sciences **Bentley University Waltham, Massachusetts** Based on slides prepared by:

Ronald L. Parker, Senior Geologist Fronterra Geosciences Denver, Colorado

<u>Minerals</u>

- Minerals are among the Earth materials that surround us.
- Almost 5,000 minerals are known.
- Around 50–100 new minerals are discovered annually.
- Human interest in minerals spans millennia.

A feathery ice crystal displays an ordered atomic structure.

Why Study Minerals?

- Minerals are the building blocks of the body of our planet.
 - Minerals make up all of the rocks and sediments on Earth.
 - Understanding Earth requires understanding minerals.
- Minerals are important to humans.
 - Industrial minerals—raw materials for manufacturing
 - Ore minerals—sources of valuable metals
 - Gem minerals—attract human passions

The geologic definition of a mineral is specialized:

- Naturally occurring
- Formed geologically
- Solid
- Crystalline structure
- Most minerals are inorganic
- We can synthesize many minerals: diamond, sapphire, quartz

They are mostly formed by geologic processes.

- Freezing from a melt (such as volcanic magmas)
- Precipitation from a dissolved state in water or other solvent
- Chemical reactions at high pressures and temperatures

Subtle distinction: living organisms <u>can</u> create minerals.

- Called <u>biogenic minerals</u> to emphasize this special origin
 - Vertebrate bones (apatite)
 - Oyster, mussel, and clam shells (aragonite)
 - Other skeletal types
 - Our own tooth enamel (hydroxyapatite)

Minerals are solid with a crystalline structure

- A state of matter that can maintain its shape indefinitely
- Minerals are not liquids or gases though they may be melted or vapourized. Ice is a mineral, water is not!

Minerals have a definite <u>elemental</u> composition but are defined rather by their structure.

- Minerals "can" be defined by a chemical formula but more commonly they are defined as a structure.
 - Simple (largely defined by chemical formula)
 - ✓ Ice—H₂O
 - ✓ Calcite—CaCO₃ (may be coloured by trace impurities)
 - ✓ Quartz—SiO₂ (may be coloured by trace impurities)
 - Complex (many elements might be substituted)
 - Biotite (prototypical): K(Mg, Fe²⁺)₃(AlSi₃O₁₀)(OH)₂
 - Hornblende—Ca₂(Fe²⁺,Mg)(AI,Fe³⁺)(Si₇AI)O₂₂(OH,F)₂

What Is a Crystal?

- A single, continuous piece of crystalline solid
- Typically bounded by flat surfaces (crystal faces)
- Crystal faces grow naturally as the mineral forms.
- Crystals are sometimes prized mineral specimens.

What Is a Crystal?

- Crystals come in a variety of shapes.
- Many descriptive terms describe crystal shape.

What Is a Crystal?

People often consider crystals to be special.

- Regular geometric form
- Crystals interact with light to create attractive beauty.
- While some think crystals possess magical powers, we have no scientific evidence that crystals affect health or mood (OJ).

We Look Inside Crystals

Science has advanced the study of minerals.

- 1912—Max van Laue proposed X-ray study of minerals.
- X-ray diffraction (XRD) is still used to identify minerals.
 - X-ray beam passed through a crystal or crystal powder creates distinctive pattern
 - Diffraction pattern related to arrangement of atoms in crystals

Looking Inside Crystals

Ordered atomic patterns in minerals display symmetry.

- Mirror image(s)
- Rotation about an axis (or axes)

Symmetry characteristics are used to identify minerals.

Looking Inside Crystals

- Ordered atoms like tiny balls packed tightly together
- Held in place by chemical bonds
- The way atoms are packed defines the crystal structure.

Na⁺

- Physical properties (hardness, shape) depend upon:
 - Identity of atoms
 - Arrangement of atoms.
 - Nature of atomic bonds

Sodium (Na⁺) and Chloride (Cl⁻) ions are bonded in a *cubic lattice* by *ionic bonds* to form the mineral Halite (NaCl), known as common salt.

Looking Inside Crystals

- The nature of atomic bonds controls characteristics.
- Diamond and graphite are made entirely of carbon (C).
 - Diamond—atoms arranged in tetrahedra; hardest mineral
 - Graphite—atoms arranged in sheets; softest mineral
 - Fullerines and graphene
- Polymorph—same composition; different structure

New crystals can form in five ways.

- Solidification from a melt
 - Crystals grow when the melt cools.
 - Liquid freezes to form solid.

New crystals can form in five ways.

- Precipitation from a solution
 - Seeds form when a solution becomes saturated.

New crystals can form in five ways.

Solid-state diffusion

Mineral structure -- garnet

- The reddish minerals one sees in the previous slide are garnets. Like other minerals, garnets are fundamentally a structure rather than a stoichiometric chemical composition as in molecules.
- The structure of the garnet can be formed with various compositions, typically:

 $X_3 Y_2(\underline{Si} \ \underline{O}_4)_3$. The X site usually being occupied by divalent cations (<u>Ca</u>, <u>Mg</u>, <u>Fe</u>, <u>Mn</u>)²⁺ and the Y site by trivalent cations (<u>Al</u>, Fe, <u>Cr</u>)³⁺

<u>Uvarovite</u>: rare green garnet

New crystals can form in five ways.

Biomineralization: our tooth enamel is mineral apatite (OJ)

New crystals can form in five ways.

Precipitating directly from a gas

Mineral growth is often restricted by lack of space.

- Anhedral—grown in tight space, no crystal faces
- Euhedral—grown in an open cavity, good crystal faces
- Anhedral crystals are much more prevalent.
- Euhedral crystals grow into the open space in a geode.

Mineral Destruction

Minerals can be destroyed by:

- Melting—heat breaks the bonds holding atoms together
- Dissolving—solvents (mostly water) break atomic bonds
- Chemical reaction—reactive materials break bonds

Mineral Identification

Mineral identification is a skill.

Requires learning diagnostic properties

- Some properties are easily seen.
 - Color
 - Crystal shape
- Some properties require handling or testing.
 - Hardness
 - Magnetization
 - Specific gravity

Physical Properties

Common Properties

- Color
- Streak on ceramic tile
- Luster
- Hardness
- Specific gravity
- Crystal habit
- Fracture or cleavage

Color

- The part of visible light that is not absorbed by a mineral
- Diagnostic for some minerals
 - Malachite is a distinctive green.
- Some minerals exhibit a broad color range.
 - Quartz (clear, white, yellow, pink, purple, gray, etc.)
- Color varieties reflect trace impurities.

Streak

- Color of a powder produced by crushing a mineral
- Obtained by scraping a mineral on unglazed porcelain
 - Streak color is less variable than crystal color.

Luster

- The way a mineral surface scatters light
- Two subdivisions:
 - Metallic—looks like a metal
 - Nonmetallic
 - Silky
 - Glassy
 - Satiny
 - Resinous
 - Pearly
 - Earthy

Hardness

- Scratching resistance of a mineral
- Derives from the strength of atomic bonds
- Hardness compared to the Mohs scale for hardness.

Specific Gravity

- Represents the density of a mineral
- Mineral weight over the weight of an equal water volume
- Specific gravity is "heft"—how heavy it feels.
 - Galena—heavy (SG 7.60)
 - Quartz—light (SG 2.65)
- Galena "feels" heavier than quartz.

Crystal Habit (shape characteristic)

- A single crystal with well-formed faces, or
- An aggregate of many well-formed crystals
- Arrangement of faces reflects internal atomic structure
- Records variation in directional growth rates
 - Blocky or equant—equal growth rate in three dimensions
 - Bladed—shaped like a knife blade
 - Needle-like—rapid growth in one dimension, slow in others

Special Physical Properties

Special physical properties

- Effervescence—reactivity with acid (e.g., Calcite)
- Magnetism—magnetic attraction (e.g., Magnetite)
- Taste lick test (e.g., Halite)

Fracture

- Minerals break in ways that reflect atomic bonding.
- Fracturing implies equal bond strength in all directions.
 - Example: quartz displays <u>conchoidal</u> fracture.
 - Breaks like glass—along smooth curved surfaces.
 - Produces extremely sharp edges.
 - Volcanic glass was used by native cultures to make tools.

Cleavage

- Tendency to break along planes of weaker atomic bonds.
- Cleavage produces flat, shiny surfaces
- Described by the number of planes and their angles
- Sometimes mistaken for crystal habit
 - Cleavage is throughgoing; it often forms parallel steps.
 - Crystal faces only occur on external surfaces.

Cleavage

Cleavage

Examples of cleavage • Three directions at 90° • $90^{\circ}90$

Three directions NOT at 90°

Mineral Classification

- Minerals can be separated into a few groups.
- J. J. Berzelius, a Swedish chemist, noted similarities.
 - Minerals can be separated by:
 - The principal anion (negative ion), or
 - Anionic group (negative molecule)
 - Example: sulfides (S⁻) or carbonates (CO₃²⁻)
- The most abundant mineral class is the silicates (SiO₄⁴⁻).

The Mineral Classes

Minerals are classified by their dominant anion.

- Silicates (SiO₂⁴⁻) are called the rock-forming minerals.
- Constitute almost the entire crust and mantle of Earth
- They are the most common minerals.
- Example: quartz (SiO₂)

- Oxides (O²⁻)
- Metal cations (Fe²⁺, Fe³⁺, Ti²⁺) are bonded to oxygen.
- Examples:
 - Magnetite (Fe₃O₄)
 - Hematite (Fe₂O₃)
 - Rutile (TiO₂)

- Sulfides (S⁻)
- Metal cations are bonded to a sulfide anion
- Examples:
 - Pyrite (FeS₂)
 - Galena (PbS)
 - Sphalerite (ZnS)

- Sulfates (SO₄²⁻)
- Metal cations bonded to a sulfate anionic group
- Many sulfates form by evaporation of seawater
- Examples:
 - Gypsum (CaSO₄•2H₂O)
 - Anhydrite (CaSO₄)

- Minerals are classified by their dominant anion.
 - Halides (Cl⁻ or F⁻)
 - Examples:
 - Halite (NaCI)
 - Fluorite (CaF₂)

- Minerals are classified by their dominant anion.
 - Carbonates (CO₃²⁻)
 - Examples:
 - Calcite (CaCO₃)
 - Dolomite ((Ca,Mg)CO₃)
 - Natrite (Na₂CO₃)

Minerals with no (dominant) anion.

- Native metals (common: Cu, Au, Ag)
- Pure masses of a single metal or alloy
- Examples:
 - Copper (Cu)
 - Gold (Au)
 - Silver (Ag)
 - Platinum (Pt)
 - And others
 - Electrum (Au/Ag)

- Silicates are the most common minerals on Earth.
- They dominate Earth's crust and mantle.
 - Made of oxygen and silicon with other atoms

The SiO₄⁴⁻ anionic unit: the silicon-oxygen tetrahedron

- Four O atoms are bonded to a central Si atom.
- Define the corners of a four-sided geometric figure
- The "silica tetrahedron" is the building block of silicates.

Independent Tetrahedra

- Silica tetrahedra share no oxygens.
- They are linked by cations.
- Examples:
 - Olivine—a glassy green mineral, typically (Mg,Fe)SiO₄
 - Garnet—forms equant, 12-sided crystals

Single Chains

Silica tetrahedra link to share two oxygens

- Example:
 - Pyroxenes
 - Dark, long crystals
 - Two cleavages near 90°

Double chains

- Silica tetrahedra alternate sharing two and three oxygens.
- Example:
 - Amphiboles
 - Dark, long crystals
 - ✓ Two cleavages at 60° and 120°

Sheet silicates

- Silica tetrahedra share three oxygens.
- Create two-dimensional flat sheets of linked tetrahedra
- Characterized by one direction of perfect cleavage
- Examples: Micas, clays

Framework silicates

- All four oxygens in each silica tetrahedron are shared.
- Examples:
 - Feldspars—plagioclase and potassium feldspar
 - Silica (quartz) group—contains only Si and O

Gems

Gemstones—a mineral with special value

- Rare—formed by unusual geological processes
- Beautiful—strikingly unique color, clarity, and luster

Gem—a cut and polished stone created for jewelry

Precious—stones that are particularly rare and expensive

- Diamond (C)
- Ruby (Al₂0₃)
- Sapphire (Al₂0₃)
- Emerald (Be₃Al₂(Si₆O₁₈)
- Semiprecious—less rare
 - Topaz (Al₂(SiO₄)(F,OH)₂)
 - Aquamarine (Be₃Al₂Si₆O₁₈)
 - Garnet (X₃Z₂(SiO₄)₃)

Gemstone facets are not natural crystal faces

Whence Diamonds?

Diamonds originate under extremely high pressure.

- ~150 km deep—in the upper mantle
- Pure carbon is compressed into the diamond structure.
- Rifting causes deep-mantle rock to move upward.
- Diamonds are found in kimberlite pipes.

Up from the Inferno: Magma and Igneous Rocks I

Edited and augmented for this course by Olivia Jensen Professor of Geophysics McGillUniversity

Montreal, Canao

Updated by:

Rick Oches, Professor of Geology & Environmental Sciences **Bentley University Waltham, Massachusetts** Based on slides prepared by:

Ronald L. Parker, Senior Geologist Fronterra Geosciences Denver, Colorado

Introduction

Volcano—a vent where molten rock comes out of Earth

- Example: <u>Kilauea Volcano</u>, Hawaii
 - Hot basaltic (~1,200°C) lava pools around the volcanic vent.
 - Hot, syrupy lava runs downhill as a lava flow.
 - The lava flow slows, loses heat, and crusts over.
 - Finally, the flow stops and cools, forming an igneous rock.

Introduction

Igneous rock is formed by cooling from a melt.

- Magma—melted rock below ground
- Lava—melted rock once it has reached the surface
- Igneous rock freezes at high temperatures (T).
 - 1,100°C 650°C, depending on composition.
- There are many types of igneous rock.

Igneous Rocks

Melted rock can cool above ground.

Extrusive igneous rocks—cool quickly at the surface

- Lava flows—streams or mounds of cooled melt
- Pyroclastic debris—cooled fragments
 - Volcanic ash—fine particles of volcanic glass
 - Volcanic rock—fragmented by eruption

Igneous Rocks

Melted rock can cool below ground.

- Intrusive igneous rocks—cool out of sight, underground
- Much greater volume than extrusive igneous rocks
- Cooling rate is slower than for extrusives.
 - Large volume magma chambers
 - Smaller volume tabular bodies or columns

Why Does Magma Form?

- Magma is not everywhere below Earth's crust.
- Magma only forms in special tectonic conditions.
 - Partial melting occurs in the crust and upper mantle.
 - Magma is fluid-like rather than "solid"
 - Melting is caused by
 - pressure release.
 - volatile addition.
 - heat transfer.

Decrease in pressure (P)—decompression

- The base of the crust is hot enough to melt mantle rock.
- But, due to high P, the rock doesn't melt.
- Melting will occur if P is decreased.
 - P drops when hot rock is carried to shallower depths.
 - Mantle plumes
 - Beneath rifts
 - Beneath mid-ocean ridges

P drops when hot rock is carried to shallower depths.

- Mantle plumes
- Beneath rifts
- Under mid-ocean ridges

Addition of volatiles (flux melting)

- Volatiles lower the melting T of a hot rock.
- Common volatiles include H₂O and CO₂.
- Subduction carries water into the mantle, melting rock.

Heat transfer melting

- Rising magma carries mantle heat with it.
- This raises the T in nearby crustal rock, which then melts.

What Is Magma Made Of?

Magmas have three components (solid, liquid, and gas).

- Solid—solidified mineral crystals are carried in the melt.
- Liquid—the melt itself is composed of mobile ions.
 - Dominantly Si and O; lesser Al, Ca, Fe, Mg, Na, and K
 - Other ions to a lesser extent.
- Different mixes of elements yield different magmas.

What Is Magma Made Of?

Gas—variable amounts of dissolved gas occur in magma.

- Dry magma—scarce volatiles
- Wet magma—up to 15% volatiles
 - ✓ Water vapor (H₂O)
 - Carbon dioxide (CO₂)
 - Sulfur dioxide (SO₂)
 - ✓ Nitrogen (N₂)
 - ✓ Hydrogen (H₂)

Major Types of Magma

- There are four major magma types based on % silica (SiO₂).
 - Felsic (<u>feldspar</u> and silica)
 - Intermediate
 - Mafic (Mg- and Fe-rich)
 - Ultramafic

66–76% SiO₂ 52–66% SiO₂ 45–52% SiO₂ 38–45% SiO₂

Major Types of Magma

- Why are there different magma compositions?
- Magmas vary chemically due to
 - initial source rock compositions.
 - partial melting.
 - assimilation.
 - magma mixing.

Magma Variation

Source rock dictates initial magma composition.

- Mantle source—ultra-mafic and mafic magmas.
- Crustal source—mafic, intermediate, and felsic magmas.

Partial Melting

- Upon melting, rocks rarely dissolve uniformly.
- Instead, only a portion of the rock melts.
 - Si-rich minerals melt first; Si-poor minerals melt last.
- Partial melting, therefore, yields a silica-rich magma.
- Removing the partial melt from its source create
 - <u>felsic</u> (feldspar/silica) magmas forming granites and rhyolites
 - <u>mafic</u> (magnesium/ferric) magmas forming basalts and gabbros

Feldspars $(\underline{KAISi_3O_8} - \underline{NaAISi_3O_8} - \underline{CaAl_2Si_2O_8})$ comprise 60% of the crust

Assimilation

- Magma melts the wall rock it passes through.
- Blocks of wall rock (xenoliths) fall into magma.
- Assimilation of these rocks alters magma composition.

Magma Mixing

- Different magmas may blend in a magma chamber.
- The result combines the characteristics of the two.
- Often magma mixing is incomplete, resulting in blobs of one rock type suspended within the other.

Magma Movement

Magma doesn't stay put; it tends to rise upward.

- Magma may move upward in the crust.
- Magma may breach the surface—a volcano.
- This transfers mass from deep to shallow parts of Earth.
 - A crucial process in the Earth System
 - Provides the raw material for soil, atmosphere, and ocean

Magma Movement

- Why does magma rise?
 - It is less dense than surrounding rocks.
 - Magma is more buoyant.
 - Buoyancy lifts magma upward.
 - Weight of overlying rock creates pressure.
 - Pressure squeezes magma upward.
 - It is like mud squeezed between your toes.

Magma Movement

- Speed of magma flow governed by viscosity.
 - Lower viscosity eases movement.
 - Lower viscosity is generated by
 - higher T.
 - Iower SiO₂ content.
 - higher volatile content.

Magma Movement

Viscosity depends on temperature, volatiles, and silica.

- Temperature:
 - hot = lower viscosity; cooler = higher viscosity
- Volatile content:
 - More volatiles—lower viscosity
 - Less volatiles—higher viscosity
- Silica (SiO₂) content:
 - ▶ Less SiO₂ (mafic)—lower viscosity.
 - ▶ More SiO₂ (felsic)—higher viscosity.

Making Igneous Rock

Cooling rate—how fast does magma cool?

- Depth—deeper is hotter; shallower is cooler.
 - Deep plutons lose heat very slowly; take a long time to cool.
 - Shallow flows lose heat more rapidly; cool quickly.
- Shape—spherical bodies cool slowly; tabular faster.
- Groundwater—circulating water removes heat.

Making Igneous Rock

- Changes with cooling
 - Fractional crystallization—early crystals settle by gravity.
 - Melt composition changes as a result.
 - Fe, Mg, Ca are removed as early mafic minerals settle out.
 - Remaining melt becomes enriched in Si, AI, Na, and K.

Bowen's Reaction Series

- N. L. Bowen—devised experiments cooling melts (1920s).
 - Early crystals settled out, removing Fe, Mg, and Ca.
 - Remaining melt progressively enriched in Si, Al, and Na.
- He discovered that minerals solidify in a specific series.
 - Continuous—plagioclase changed from Ca-rich to Na-rich.
 - Discontinuous—minerals start and stop crystallizing.
 - Olivine
 - Pyroxene
 - Amphibole
 - Biotite

Online mineral database

